Irinos IR Original-Betriebsanleitung

© 2015 - 2016 Messtechnik Sachs GmbH

Diese Betriebsanleitung wurde für die Darstellung in einem Webbrowser im HTML-Format optimiert. Verwenden Sie die PDF-Version nur, wenn kein Zugriff auf die Online-Hilfe möglich ist.

1. Ei	nleitung	7
1.1	Impressum	
1.2	Revisions-Historie	
1.3	Rechtliche Hinweise	9
1.3.2	Nutzungshinweise für Software / elektronische Dokumentation	9
1.3.2	2 Warnhinweiskonzept	13
1.3.3	3 Qualifiziertes Personal	14
1.3.4	4 Haftungsausschluss	14
1.4	Vorwort	14
1.4.2	L Zweck	15
1.4.2	2 Gültigkeitsbereich dieser Betriebsanleitung	15
1.4.3	Bestimmungsgemäßer Gebrauch	
1.4.4	Erforderliche Grundkenntnisse	
1.4.:	Weitere Dokumentation	16 16
1.4.0		10
2. Si	cherheitshinweise	17
3. Sy	vstem-Übersicht	25
3.1	Konzept	26
3.2	Modularität	27
3.3	Synchronisation	
3.4	Master vs. integrierter Master vs. Slave	
3.5	Digitale Ein-/Ausgänge (Bit-I/O)	
3.6	Snannungsversorgung	30
2 7	Refectioung	27
5.7 2 0	Komponenten Überricht	
5.0	Komponenten-obersicht	
4. Pr	oduktbeschreibungen	45
4.1	Allgemein	46
4.1.1	1 Status-Anzeige via LED (integrierter Master)	47
4.1.2	2 Status-Anzeige via 7-Segment-Anzeige (Master & Slave)	48
4.2	IR-MASTER zur Kommunikation mit dem PC	49
4.3	IR-TFV für induktive Wegaufnehmer / Messtaster	52
4.4	IR-AIN mit Analogeingängen ±10V	56
4.5	IR-INC für Inkrementalgeber 1Vss oder TTL / RS422	58
4.6	IR-DIO mit digitalen Ein-/Ausgängen	61
4.7	IR-HMI1 Bedienbox	64
4.8	IR-PU Spannungsversorgung (Industrie-Version)	
4.9	I/O-Boxen für den IO-Bus (Tischversion)	

	I/O-Boxen für den IO-Bus (Hutschlenen-Version)	
5. Ste	ckerbelegungen	79
5.1	ILink-Schnittstelle (Master, integrierter Master & Slave)	80
5.2	Ethernet (Master & integrierter Master)	82
5.3	2 digitale Eingänge (integrierter Master)	84
5.4	Digitale Eingänge M12 (IR-MASTER)	85
5.5	Digitale Ausgänge M12 (IR-MASTER)	87
5.6	Digitale Ein- / Ausgänge M23 (IR-DIO-16-16-M23-xx-IL) sowie I/O-Box IO-Bus	en für 88
5.7	Spannungsversorgung für digitale Ein-/Ausgänge M12 (IR-DIO-16-16-M23-EXTP-IL)	90
5.8	Digitale Ein-/Ausgänge DSUB 37 (IR-DIO-16-16-D37-EXTP-IL)	
5.9	Analog-Eingänge ±10V (IR-MASTER & IR-AIN)	
5.10	IO-Bus M9-Steckverbinder für IR-MASTER sowie I/O-Boxen	
5.11	IO-Bus DSUB-Steckverbinder für I/O-Boxen	101
5.12	Fingänge für induktive Messtaster (IR-TEV)	
5 13	Anschluss KE27 für Anschlussbox für induktive Messtaster (IR-TEV)	102
5 14	Inkrementalgeber 1Vss oder TTL / RS422 (IR-INC)	105
3.14		
6. Mo	ntage	109
6.1	Prüfen der Lieferung	110
6.2	Auswahl des Standorts	111
6.2 6.3	Auswahl des Standorts Befestigung der Irinos-Boxen	111 113
6.2 6.3 6.3.1	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen	111 113 113
6.2 6.3 6.3.1 6.3.2	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene	
6.2 6.3 6.3.1 6.3.2 6.3.3	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch	 111 113 113 113 114
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.2.5	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil	111 113 113 113 113 114 115 117
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil Montageständer für 40mm Item-Profil	111 113 113 113 113 113 114 115 117
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil Montageständer für 40mm Item-Profil Leitungen anschließen	111 113 113 113 113 114 115 117 119 120
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.4.1 6.4.1	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil Montageständer für 40mm Item-Profil Leitungen anschließen ILink-Verkabelung	111 113 113 113 113 113 114 115 117 119 120 120
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.4.1 6.4.2 6.4.2	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil Montageständer für 40mm Item-Profil Leitungen anschließen ILink-Verkabelung IO-Bus - Verkabelung Ethornet Verkindung horstellen	111 113 113 113 113 114 115 117 119 120 122 123
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.4.1 6.4.2 6.4.3 6.4.4	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil Montageständer für 40mm Item-Profil Leitungen anschließen ILink-Verkabelung IO-Bus - Verkabelung Ethernet-Verbindung herstellen Induktive Messtaster anschließen	111 113 113 113 113 114 115 117 119 120 122 123 124
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil Montageständer für 40mm Item-Profil Leitungen anschließen ILink-Verkabelung IO-Bus - Verkabelung Ethernet-Verbindung herstellen Induktive Messtaster anschließen	111 113 113 113 113 113 114 115 117 119 120 122 123 124 124
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.4.1 6.4.2 6.4.3 6.4.3 6.4.4 6.4.5 6.4.6	Auswahl des Standorts	111 113 113 113 113 113 114 115 117 119 120 122 123 124 125
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.4.1 6.4.2 6.4.3 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil Montageständer für 40mm Item-Profil Leitungen anschließen ILink-Verkabelung IO-Bus - Verkabelung Ethernet-Verbindung herstellen Induktive Messtaster anschließen Analogsensoren anschließen Digitale Ein-/Ausgänge anschließen	111 113 113 113 113 113 114 115 117 119 120 122 123 124 125 125
 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 7. Inb 	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil Montageständer für 40mm Item-Profil Leitungen anschließen ILink-Verkabelung IO-Bus - Verkabelung Ethernet-Verbindung herstellen Induktive Messtaster anschließen Inkrementalgeber anschließen Digitale Ein-/Ausgänge anschließen Ethernet-und Kennenlernen	111 113 113 113 113 113 113 113 113 113 113 113 114 115 117 119 120 122 123 124 124 125 125 127
6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 7. Inb 7.1	Auswahl des Standorts Befestigung der Irinos-Boxen Direkte Befestigung über rückseitige Gewindehülsen Befestigung an einer Hutschiene Front-Befestigung über Befestigungs-Flansch Befestigung an 40mm Item-Profil Montageständer für 40mm Item-Profil Leitungen anschließen ILink-Verkabelung Ethernet-Verbindung herstellen Induktive Messtaster anschließen Inkrementalgeber anschließen Digitale Ein-/Ausgänge anschließen Erste Schritte	111 113 113 113 113 113 113 113 113 113 113 113 114 115 117 119 120 122 123 124 125 125 127 128

7	7.3	Netzwerk-Konfiguration	130
7	7.4	Irinos-Tool	131
7	7.5	Web-Server	132
8.	Mes	ssung / Steuerung via MscDll	139
5	3.1	Einleitung	140
8	3.2	Grundlagen	140
8	3.3	Statische vs. dynamische Messung	143
8	3.4	Einbindung der DLL / Konfiguration	144
8	8.5	Verbindungs-Aufbau zum Irinos-System	144
8	3.6	Verbindung beenden	146
8	3.7	Statische Messung	147
8	3.8	Dynamische Messung	152
	8.8.1	Grundlagen	152
	8.8.2	Weiterführende Hinweise	157
	8.8.3	Ablage der dynamischen Messwerte	160
8	8.9	Beispiele zur dynamischen Messung	163
	8.9.1	Beispiel 1: Zeitgesteuerte dynamische Messung	163
	8.9.2	Beispiel 2: Positionsgesteuerte dynamische Messung	165
	8.9.3	Beispiel 3: 2 dynamische Messungen gleichzeitig	169
8	3.10	Bit I/O	172
8	3.11	Fehler und Diagnose-Management	177
	8.11.1	Fehler der Mess-Eingänge erkennen / Hardware-Status abfragen	177
	8.11.2	Ereignis-Status der Irinos-Boxen auslesen / zurücksetzen	180
	8.11.3	Absolut-Zeit für Diagnose-Speicher setzen	182
8	3.12	System-Aufbau prüfen	182
8	3.13	Tipps und Tricks	183
	8.13.1	System-Informationen auslesen	183
	8.13.2	Anzahl der statischen Mess-Kanäle einschränken	
8	3.14	Lizenzierung	185
9.	Diag	gnose und "Erste Hilfe"	187
9	9.1	Allgemeine Vorgehensweise	188
9	9.2	Diagnose-Ereignisse	190
9	9.3	Diagnose-Speicher	202
Ģ	9.4	Erste Hilfe "Netzwerkverbindung"	202
10). Wai	rtung, Pflege und Entsorgung	207
-	10.1	Wartung	208
2	10.2	Pflege	208

Table of Contents

10.3	Entsorgung	209
11. App	likationshinweise	211
11.1	Inkrementalgeber 1Vss oder TTL / RS422	
11.1.1	Referenzierung bei Absolutmessung	212
11.1.2	Eingangsfrequenz	212
11.1.3	Interpolation (nur 1Vss)	213
11.2	Leistungsaufnahme	215
11.3	Speicher-Vorgange in den nicht-fluchtigen Speicher	
^{11.3} 12. Tec	Speicher-Vorgange in den nicht-fluchtigen Speicher hnische Daten	
11.3 12. Tec 12.1	Speicher-Vorgange in den nicht-fluchtigen Speicher hnische Daten Allgemeine technische Daten	
11.3 12. Tec 12.1 12.2	Speicher-Vorgange in den nicht-fluchtigen Speicher hnische Daten Allgemeine technische Daten Abmessungen Irinos-Box	
11.3 12. Tecl 12.1 12.2 12.3	Speicher-Vorgange in den nicht-flüchtigen Speicher hnische Daten Allgemeine technische Daten Abmessungen Irinos-Box Abmessungen Netzteil-Box IR-PU50	
11.3 12. Tec 12.1 12.2 12.3 12.4	Speicher-Vorgange in den nicht-fluchtigen Speicher hnische Daten Allgemeine technische Daten Abmessungen Irinos-Box Abmessungen Netzteil-Box IR-PU50 Abmessungen Befestigungsflansch IR-MFFM-1	217 219

Einleitung

1 Einleitung

1.1 Impressum

Titel	Irinos IR Original-Betriebsanleitung
Hersteller	Messtechnik Sachs GmbH
	Siechenfeldstraße 30/1
	D-73614 Schorndorf
	Tel. 07181 / 99960-0
	post@messtechnik-sachs.de
Gültig für	Messmodule Irinos IR
Copyright-Hinweis	© 2015 - 2016 Messtechnik Sachs GmbH
Hinweis auf Markenzeichen und Warenzeichen	Alle in diesem Handbuch genannten Bezeichnungen von Erzeugnissen sind Warenzeichen der jeweiligen Firmen.
Material-Nr.	785-1000
Änderungshinweis	Technische Änderungen vorbehalten.
Stand der Drucklegung	10.10.2016

1.2 Revisions-Historie

Ve rsi on	Da tu m	Änderungen
A	20 16- 02- 17	Erste Version
В	20 16- 03-	Korrektur der Steckerbelegung der digitalen Ein-/ Ausgänge M12 (das Bild war jeweils korrekt, die Tabelle falsch).

	23	Betroffene Kapitel:
		• <u>2 digitale Eingänge (integrierter Master)</u> ^{D84}
		 <u>Digitale Ausgänge M12 (IR-MASTER)</u>^{D87}
		 <u>Digitale Ausgänge M12 (IR-MASTER)</u>^{D₅}
С	20 16-	Abbildung der Stecker-Belegung für Inkrementalgeber korrigiert.
	07- 14	Betroffenes Kapitel:
		 <u>Steckerbelegung Inkrementalgeber^{D™}</u>
D	20 16-	Aufnahme der Bedienbox IR-HMI1 in das Benutzerhandbuch.
	08- 24	Betroffene Kapitel:
		• <u>Komponenten-Übersicht^{D32}</u>
		• Produktbeschreibung Bedienbox IR-HMI ^{D64}
		• <u>Bit I/O via MscDII</u> ^{D 172}
E	20 16- 10-	Korrektur der Steckerbelegung für die Spannungsversorgung über M12 (das Bild war korrekt, die Tabelle falsch).
	10	Betroffenes Kapitel:
		• <u>Spannungsversorgung für digitale Ein-/Ausgänge M12^{D90}</u>

1.3 Rechtliche Hinweise

1.3.1 Nutzungshinweise für Software / elektronische Dokumentation

Schutzrechte und Nutzungsumfang

Messtechnik Sachs stellt entweder auf portablen Datenträgern (z. B. Disketten, CD-ROMs, DVDs, ...), in schriftlicher (drucktechnischer) oder elektronischer Form Bedienungsanleitungen, Handbücher, Dokumentationen, sowie Softwareprogramme, alles und insgesamt im Folgenden als "LIZENZGEGENSTAND" bezeichnet, entgeltlich und/oder unentgeltlich zur Verfügung. Der LIZENZGEGENSTAND unterliegt u.a. urheberrechtlichen Schutzbestimmungen. Messtechnik Sachs oder Dritte haben Schutzrechte an diesem LIZENZGEGENSTAND. Soweit Dritten ganz oder teilweise Rechte an diesem LIZENZGEGENSTAND zustehen, hat Messtechnik Sachs entsprechende Nutzungsrechte. Messtechnik Sachs gestattet dem Verwender die Nutzung des LIZENZGEGENSTANDES unter den folgenden Voraussetzungen:

1.1) Nutzungsumfang elektronische Dokumentation

- a) Mit dem Erhalt/Erwerb oder der Überlassung eines LIZENZGEGENSTANDES erhalten Sie als Verwender in Bezug auf den jeweiligen LIZENZGEGENSTAND ein einfaches, nicht übertragbares Nutzungsrecht, das den Verwender berechtigt, diesen für eigene, ausschließlich betriebsinterne Zwecke, auf beliebig vielen Maschinen innerhalb seines Betriebsgeländes (Einsatzort), zu nutzen. Dieses Nutzungsrecht umfasst ausschließlich das Recht, den LIZENZGEGENSTAND auf den am Einsatzort eingesetzten Zentraleinheiten (Maschinen) zu speichern.
- b) Bedienungsanleitungen und/oder Dokumentationen, ungeachtet in welcher Form zur Verfügung gestellt, darf der Verwender an dessen Einsatzort außerdem in beliebiger Zahl über einen Drucker ausdrucken, sofern dieser Ausdruck vollständig mit diesen Nutzungsbedingungen und sonstigen Benutzerhinweisen ausgedruckt bzw. verwahrt wird.
- c) Mit Ausnahme des Messtechnik Sachs Logos ist der Verwender berechtigt, Bilder und Texte der Bedienungsanleitungen/ Dokumentationen zur Erstellung eigener Maschinen- und Anlagendokumentation zu verwenden. Die Verwendung des Messtechnik Sachs Logos bedarf der schriftlichen Genehmigung von Messtechnik Sachs. Für die Übereinstimmung genutzter Bilder und Texte mit der Maschine/Anlage bzw. dem Produkt ist der Verwender selbst verantwortlich.
- d) Weitergehende Nutzungen sind in folgendem Rahmen zulässig:

Das Vervielfältigen ausschließlich zur Verwendung im Rahmen einer Maschinen- und Anlagendokumentation aus elektronischen Dokumenten sämtlicher dokumentierter Zulieferbestandteile. Die Demonstration gegenüber Dritten ausschließlich unter Sicherstellung, dass kein Datenmaterial ganz oder teilweise in anderen Netzwerken oder anderen Datenträgern verbleibt oder dort reproduziert werden kann.

Die Weitergabe von Ausdrucken an Dritte außerhalb der Regelung in Ziffer 3 sowie jede Bearbeitung oder andersartige Verwendung sind nicht zulässig.

1.2) Nutzungsumfang Softwareprodukte

An Software von Messtechnik Sachs jeglicher Art und der dazugehörigen Dokumentation erhält der Kunde ein nicht ausschließliches, nicht übertragbares und zeitlich nicht begrenztes Nutzungsrecht auf einem bestimmten bzw. im Einzelfall festzulegenden Hardware-Produkt. Messtechnik Sachs bleibt Inhaberin des Urheberrechts sowie aller anderen gewerblichen Schutzrechte. Das Recht Vervielfältigungen anzufertigen, ist nur zum Zwecke der Datensicherung gegeben. Copyright-Vermerke dürfen nicht entfernt werden.

2. Copyright Vermerk

Jeder LIZENZGEGENSTAND enthält einen Copyright Vermerk. Bei jeglicher Vervielfältigung die nach diesen Bestimmungen erlaubt ist, muss der entsprechende Copyright Vermerk des betreffenden Originals übernommen werden:

Bsp.: © 2015-2016, Messtechnik Sachs GmbH,

D-73614 Schorndorf

3. Übertragung der Nutzungsbefugnis

Der Verwender kann seine Nutzungsbefugnis nach diesen Bestimmungen bzgl. des jeweiligen LIZENZGEGENSTANDES in dem Umfang und mit den Beschränkungen der Bedingungen gemäß Ziffer 1 und 2 insgesamt auf einen Dritten übertragen. Auf diese Nutzungsbedingungen ist der Dritte ausdrücklich hinzuweisen.

II. Export LIZENZGEGENSTAND

Der Verwender muss beim Export des LIZENZGEGENSTANDES oder Teilen davon die Ausfuhrbestimmungen des ausführenden Landes und des Landes des Erwerbs beachten.

III. Gewährleistung

1. Produkte von Messtechnik Sachs werden hard- und softwaretechnisch weiterentwickelt. Liegt der LIZENZGEGENSTAND, gleich in welcher Form, einem Produkt nicht unmittelbar bei, d.h. wird nicht auf einem, dem Produkt beiliegenden portablen Datenträger mit dem betreffenden Produkt als Liefereinheit ausgeliefert, gewährleistet Messtechnik Sachs nicht, dass eine elektronische Dokumentation mit jedem Hard- und Software-Stand des Produkts übereinstimmt.

2. Die in einer elektronischen Dokumentation enthaltenen Informationen können von Messtechnik Sachs ohne Vorankündigungen geändert werden und stellen keine Verpflichtung seitens Messtechnik Sachs dar.

3. Messtechnik Sachs gewährleistet, dass das von ihr erstellte Softwareprogramm mit der Anwendungsbeschreibung und Programmspezifikation übereinstimmt, jedoch nicht, dass die in der Software enthaltenen Funktionen vollständig unterbrechungsu. fehlerfrei laufen oder dass die in der Software enthaltenen Funktionen in allen vom Erwerber gewählten Kombinationen und vorgesehenen Einsatzbedingungen ausführbar sind, bzw. den Erfordernissen entsprechen.

IV. Haftung/Haftungsbeschränkungen

1. Messtechnik Sachs stellt LIZENZGEGENSTÄNDE zur Verfügung, um den Verwender einerseits in die Lage zur versetzen Messtechnik Sachs Produkte die zum ordnungsgemäßen Betrieb einer Software bedürfen, diese vertragsgemäß einzusetzen, oder ihn bei der Erstellung seiner Maschinen- und Anlagendokumentation zu unterstützen. Für die elektronische Dokumentation, die in Form von portablen Datenträgern nicht unmittelbar einem Produkt beiliegt, d.h. nicht mit einem Produkt als Liefereinheit ausgeliefert wurde, gewährleistet

Messtechnik Sachs garantiert jedoch nicht, dass die separat vorgehaltene/gelieferte elektronische Dokumentation mit dem vom Verwender tatsächlich genutzten Produkt übereinstimmt.

Letzteres gilt insbesondere bei auszugsweisem Gebrauch für eigene Dokumentationen des Verwenders. Die Gewährleistung und Haftung für separat vorgehaltene / gelieferte portable Datenträger, d.h. mit Ausnahme der im Internet/Intranet vorgehaltenen elektronischen Dokumentation, beschränkt sich ausschließlich auf eine ordnungsgemäße Duplikation der Software, wobei Messtechnik Sachs gewährleistet, dass jeweils der neueste Stand der Dokumentation Inhalt des betreffenden, portablen Datenträgers ist. In Bezug auf die im Internet/ Intranet vorgehaltene elektronische Dokumentation wird nicht gewährleistet, dass diese denselben Versionsstand aufweist wie die zuletzt drucktechnisch veröffentlichte Ausgabe.

2. Messtechnik Sachs haftet ferner nicht für mangelnden wirtschaftlichen Erfolg oder für Schäden oder Ansprüche Dritter wegen der Nutzung/Verwendung der vom Verwender eingesetzten LIZENZGEGENSTÄNDE, mit Ausnahme von Ansprüchen aus der Verletzung von Schutzrechten Dritter, welche die Nutzung der LIZENZGEGENSTÄNDE betreffen.

3. Die Haftungsbeschränkungen nach Absatz 1. und 2. gelten nicht, soweit in Fällen von Vorsatz oder grober Fahrlässigkeit oder Fehlen zugesicherter Eigenschaften eine zwingende Haftung besteht. In einem solchen Fall ist die Haftung von Messtechnik Sachs auf den Schaden begrenzt, der für Messtechnik Sachs nach der Kenntnis der konkreten Umstände erkennbar war.

V. Sicherheitsrichtlinien/Dokumentation

Gewährleistungs- und Haftungsanspruch nach Maßgabe der vorstehenden Regelungen (Ziff. III. u. IV) sind nur gegeben, wenn der Anwender die Sicherheitsrichtlinien einer Dokumentation im Zusammenhang mit der Nutzung der Maschine und deren Sicherheitsrichtlinien oder die Nutzungsbedingungen von Software beachtet hat. Für die Kompatibilität nicht mit einem Produkt als Liefereinheit ausgelieferter elektronischer Dokumentation mit dem vom Anwender tatsächlich genutzten Produkt ist der Anwender selbst verantwortlich.

1.3.2 Warnhinweiskonzept

Diese Bedienungsanleitung enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

\wedge	Gefahr
	bezeichnet eine unmittelbar drohende Gefahr. Wenn sie nicht gemieden wird, sind Tod oder schwerste Verletzungen (Verkrüppelung) die Folge.

\wedge	Warnung
	bezeichnet eine möglicherweise gefährliche Situation. Wenn sie nicht gemieden wird, können Tod oder schwerste Verletzungen die Folge sein.

\land	Vorsicht
	bezeichnet eine möglicherweise gefährliche Situation. Wenn sie nicht gemieden wird, können leichte oder geringfügige Verletzungen die Folge sein.

bezeichnet eine möglicherweise schädliche Situation. Wenn sie nicht gemieden wird, kann das Produkt oder etwas in der Umgebung beschädigt werden.

1.3.3 Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung qualifiziertem Personal gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

1.3.4 Haftungsausschluss

Der Inhalt dieser Dokumentation wurde von uns sorgfältig auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Abweichungen können dennoch nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig geprüft. Etwaige Korrekturen sind in den nachfolgenden Auflagen enthalten.

1.4 Vorwort

1.4.1 Zweck

Diese Bedienungsanleitung enthält alle erforderlichen Informationen für die Inbetriebnahme, die Nutzung sowie die Wartung des Irinos-Messsystems. Zur Zielgruppe gehören Benutzer und Servicetechniker, die das Produkt in Betrieb nehmen, es parametrieren oder Fehleranalysen durchführen.

1.4.2 Gültigkeitsbereich dieser Betriebsanleitung

Diese Betriebsanleitung gilt für das industrielle Messsystem Irinos sowie die in der <u>Komponenten-Übersicht</u>^{D32} beschriebenen Optionen.

1.4.3 Bestimmungsgemäßer Gebrauch

Irinos ist ein flexibles High-Speed - Messsystem für die industrielle Fertigungsmesstechnik. Es ist für den Dauerbetrieb (24/7) geeignet.

Das Messgerät ist ausdrücklich nicht geeignet für den Einsatz in medizinischen oder explosionsgefährdeten Bereichen, Flugzeugen, für die Raumfahrt sowie für den Heim- und Bürobereich. Nicht aufgeführte Bereiche, die diesen vom Sinn her ähnlich sind, gehören ebenfalls dazu.

In sicherheitskritischen Bereichen ist die Betriebssicherheit durch externe Vorrichtungen zu gewährleisten (z.B. externer Not-Aus-Kreis).

Bitte beachten Sie:

Warnung
Produkte der Messtechnik Sachs GmbH dürfen nur für die im Datenblatt und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und –komponenten zum Einsatz kommen, müssen diese von der Messtechnik Sachs GmbH empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

1.4.4 Erforderliche Grundkenntnisse

Für die mechanische Integration und Befestigung sind solide Kenntnisse in den Bereichen Mechanik und Maschinenbau erforderlich.

Für die elektrische Installation und die Inbetriebnahme sind Fachkenntnisse in Elektrotechnik sowie elektrotechnischer Sicherheit erforderlich.

Für die Einrichtigung der Messaufgabe sind fundierte Kenntnisse in der industriellen Messtechnik sowie PC-Kenntnisse erforderlich.

1.4.5 Weitere Dokumentation

Beachten Sie das Begleitblatt, das mit jedem Irinos-Modul mitgeliefert wird. Dies gilt ins besonders für die darin enthaltenen Sicherheitshinweise. Die technischen Daten sind dem jeweils zugehörigen Datenblatt zu entnehmen.

Entwickler finden die Beschreibung zur Nutzung der Kommunikations-Bibliothek (MscDll.dll) im Referenz-Handbuch für diese Bibliothek.

1.4.6 Versionsstand der Firmware

Diese Bedienungsanleitung bezieht sich auf den Firmware Versionsstand V1.0.

Sicherheitshinweise

2 Sicherheitshinweise

Achtung

Beschädigung durch Öffnen des Gerätes

Öffnen sie die Irinos-Komponenten nicht. Sie sind so konzipiert, dass ein Öffnen nicht erforderlich ist. Die Messbox und/oder das Messsystem könnten beschädigt werden. Fehlfunktionen oder Zerstörung wären die mögliche Folge.

Durch Öffnen der Irinos-Komponenten erlischt die Gewährleistung.

Achtung

Ungewollte Betriebssituation

Hochfrequente Strahlung, z.B. vom Mobiltelefon, stört Gerätefunktionen und kann zu Fehlfunktionen des Irinos-Messsystems führen.

Personen können verletzt und die Anlage beschädigt werden.

Vermeiden Sie hochfrequente Strahlung:

- $_{\odot}$ Entfernen Sie Strahlungsquellen aus der Umgebung des Irinos Messsystems.
- o Schalten Sie strahlende Geräte ab.
- Reduzieren Sie die Funkleistung strahlender Geräte.

Stellen Sie die Einhaltung der elektromagnetischen Verträglichkeit sicher.

Warnung	
---------	--

Elektrischer Schlag

Eine unzureichende Erdung und/oder Trennung vom Versorgungsnetz kann zu einem Schaden von Mensch, Maschine und Anlage führen.

Bitte beachten Sie:

 Verwenden Sie für die elektrische Versorgung ausschließlich PELV-Stromkreise nach IEC60204-1 (Protective Extra-Low Voltage, PELV).

 Berücksichtigen Sie zusätzlich die allgemeinen Anforderungen an PELV-Stromkreise nach IEC60204-1.

Verwenden Sie ausschließlich Spannungsquellen, die eine sichere elektrische Trennung der Betriebs- und Lastspannung nach IEC60204-1 gewährleisten.

	Warnung			
	Gefährdungen an der ungeschützten Maschine oder Anlage			
	Bei Betrieb in einer Maschine oder Anlage ist zu beachten:			
	An der ungeschützten Maschine können entsprechend der Ergebnisse einer Risikoanalyse Gefährdungen bestehen. Diese Gefährdungen können zu Personenschaden führen.			
	Die Gefährdung von Personen vermeiden Sie entsprechend der Risikoanalyse durch folgende Maßnahmen:			
	 Zusätzliche Schutzeinrichtungen an der Maschine oder Anlage. Hierbei müssen insbesondere Programmierung, Parametrierung und Verdrahtung der eingesetzten Peripherie entsprechend der durch notwendige Risikoanalyse festgestellten Sicherheitsperformance (SIL, PL oder Kat.) erfolgen. 			
	 Die bestimmungsgemäße Verwendung des Irinos- Messsystems, die Sie durch einen Funktionstest an der Anlage nachweisen. Damit können Programmier-, Parametrier- und Verdrahtungsfehler erkannt werden. 			
	 Dokumentation der Testergebnisse, die Sie bei Bedarf in die relevanten Sicherheitsnachweise eintragen. 			

Elektrostatisch gefährdete Bauteile

Eine Irinos-Box enthält elektrostatisch gefährdete Bauteile. Diese können bereits beim Berühren durch Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen.

Öffnen Sie eine Irinos-Box nicht. Sie vermeiden dadurch eine Berührung der gefährdeten Bauteile.

Beschädigung des Irinos-Messsystems bei Transport und Lagerung

Wenn ein Irinos-Messsystem ohne Verpackung transportiert oder gelagert wird, wirken Stöße, Schwingungen, Druck und Feuchtigkeit ungeschützt auf die Irinos-Komponenten ein. Eine beschädigte Verpackung weist darauf hin, dass Umgebungsbedingungen bereits massiv auf die Irinos-Komponenten eingewirkt haben.

Die Irinos-Komponenten und/oder das Irinos-System kann/können beschädigt werden.

Entsorgen Sie nicht die Originalverpackung. Verpacken Sie die Irinos-Komponenten bei Transport und Lagerung.

Achtung

Beschädigung durch Betauung

Wenn die Irinos-Komponenten bzw. das Irinos-Messsystem während des Transports niedrigen Temperaturen oder extremen Temperaturschwankungen ausgesetzt wurde, z.B. bei kalter Witterung, kann sich Feuchtigkeit am oder in den Irinos-Komponenten niederschlagen (Betauung).

Feuchtigkeit verursacht Kurzschluss in elektrischen Schaltkreisen und beschädigt das Irinos-Messsystem.

Um Beschädigungen zu vermeiden, gehen Sie wie folgt vor:

- $_{\odot}$ Lagern Sie die Irinos-Komponenten bzw. das Irinos-Messsystem trocken.
- Gleichen Sie die Irinos-Komponenten bzw. das Irinos-Messsystem vor Inbetriebnahme der Raumtemperatur an.
- Setzen Sie die Irinos-Komponenten bzw. das Irinos-Messsystem nicht der direkten Wärmestrahlung eines Heizgeräts aus.
- Bei Betauung schalten Sie das Irinos-Messsystem erst nach kompletter Trocknung ein oder nach einer Wartezeit von ca. 8 Stunden.

Umgebungsbedingungen und chemische Beständigkeit

Umgebungen, die für die Irinos-Komponenten nicht geeignet sind, stören den Betrieb. Chemische Mittel (z.B. Reinigungs- oder Betriebsmittel) können die Farbe, Form, Struktur der Geräteoberfläche verändern.

Die Irinos-Komponenten können beschädigt werden. Fehlfunktionen können die Folge sein.

Beachten Sie daher die folgenden Vorsichtsmaßnahmen:

- Betreiben Sie das Irinos-Messsystem nur in geschlossenen Räumen. Bei Zuwiderhandlung erlischt die Gewährleistung.
- Betreiben Sie das Irinos-Messsystem nur entsprechend den Umgebungsbedingungen, die in den technischen Daten angegeben sind.
- Schützen Sie das Irinos-Messsystem vor Staub, Feuchtigkeit und Hitze.
- Setzen Sie das Irinos-Messsystem keiner direkten Bestrahlung durch Sonnenlicht oder andere starke Lichtquellen aus.
- Ohne Zusatzschutzmaßnahmen, z.B. durch Zuführung sauberer Luft, kann das Irinos-Messsystem nicht an Orten mit erschwerten Betriebsbedingungen durch ätzende Dämpfe oder Gase eingesetzt werden.
- o Verwenden Sie nur geeignete Reinigungsmittel.

Unzulässige und ungeeignete Reinigungsmittel können das Gerät beschädigen.

Verwenden Sie als Reinigungsmittel bei leichten Verschmutzungen nur Spülmittel, bei schweren Verschmutzungen Spiritus oder vergleichbare Alkohole. Verwenden Sie folgende Reinigungsmittel nicht:

- o Aggressive Lösungs- oder Scheuermittel
- o Dampfstrahler
- o Druckluft
- Staubsauger

Vorsicht	
Unbeabsichtigte Reaktion beim Reinigen des Irinos- Messsystem	
Wenn das Irinos-Messsystem beim Reinigen eingeschaltet ist, können Bedienelemente unbeabsichtigt ausgelöst werden.	
Das Irinos-Messsystem oder damit verbundene Komponenten können unbeabsichtigt reagieren. Personenschaden oder Maschinenschaden kann die kann die Folge sein.	
Schalten Sie das Gerät vor der Reinigung aus.	

System-Übersicht

3 System-Übersicht

3.1 Konzept

Das Irinos-System übernimmt innerhalb eines industriellen Messsystems die hardwarenahen und zeitkritischen Funktionen.

Messdaten verschiedener Aufnehmertypen werden mit hoher Geschwindigkeit und Genauigkeit synchron in Echtzeit aufgenommen, vorverarbeitet und zwischengespeichert. Sie werden sodann in normierter Form über eine Standard-Ethernet-Verbindung zum PC übertragen (siehe Abbildung).

Irinos System-Konzept

Eine wesentliche Eigenschaft des Systems ist die Unabhängigkeit vom Zeitverhalten des PCs. Rundlauf- und Formmessungen sind somit selbst auf Laptop-PCs ohne spezielle Hardware bzw. Echtzeit-Funktion möglich. Die Anbindung an die Messrechner-Software erfolgt über eine <u>Windows DLL</u>^{D¹⁰}, die sich über die Windows 32 Bit API ansprechen lässt. Die DLL ist mit allen aktuellen Windows-Versionen lauffähig (Windows XP, Vista, 7, 8, 10).

Messrechner und Mess-Software sind als Gesamtsystem mit den Irinos-Komponenten von Messtechnik Sachs erhältlich. Aufgrund des offenen Konzepts kann das Irinos-System aber auch mit Messrechnern verschiedener anderer Hersteller kombiniert werden. Alternativ kann die DLL auch in eigene Mess-Software eingebunden werden.

3.2 Modularität

Das Irinos-System ist flexibel für verschiedene Mess-Aufgaben einsetzbar. Dies reicht beispielsweise von kleinen SPC-Arbeitsplätzen mit wenigen Messtastern bis hin zu komplexen Mess-Anlagen mit einer Vielzahl verschiedener Messtaster.

Ein Irinos-System besteht aus mindestens einer und maximal 32 Irinos-Boxen. Jede Irinos-Box hat eine feste Anzahl an Messeingängen (z.B. 4 oder 8). Die Irinos-Boxen werden in Linien-Topologie über die ILink-Schnittstelle miteinander verbunden, d.h. zwischen zwei Irinos-Boxen gibt es immer ein ILink-Kabel. Der Gesamtabstand zwischen der ersten und der letzten Irinos-Box darf 20m betragen.

Die ILink-Schnittstelle vereint drei Aufgaben in einem:

- a) Datenaustausch zwischen den Irinos-Boxen.
- b) Zeit-Synchronisation aller Messkanäle.
- c) Spannungsversorgung der Irinos-Boxen.

Es können Irinos-Boxen mit verschiedenen Mess-Eingängen beliebig kombiniert werden.

Für den PC bzw. die Messrechner-Software spielt die Anzahl der Irinos-Boxen keine Rolle. Er sieht immer ein Irinos-System, dessen Messkanal-Anzahl sich aus der Anzahl der im System vorhandenen Irinos-Boxen ableitet.

Die Messwerte werden über die ILink-Schnittstelle automatisch zwischen den Irinos-Boxen übertragen und zusammengefasst. Dann können sie über die Ethernet-Schnittstelle zusammenhängend ausgelesen werden.

3.3 Synchronisation

Alle Irinos-Boxen haben dieselbe System-Zeit, genannt "ILink-Zeit" (Einheit: μ s). Technisch bedingte Abweichungen der einzelnen Irinos-Boxen von der ILink-Zeit werden kontinuierlich korrigiert. Dies muss durch den Anwender weder parametriert noch kontrolliert werden. Die Abweichungen liegen in der Praxis im Bereich von wenigen hundert Nanosekunden.

Die Messwertaufnahme wird bei allen Irinos-Boxen basierend auf der ILink-Zeit gleichzeitig ausgelöst. Die Messwerte werden dann im internen Puffer der Irinos-Box zwischengespeichert und anschließend von der Master-Box mit den anderen Messwerten zusammengeführt. Dadurch können die Messwerte aller Kanäle gleichzeitig mit sehr hoher Geschwindigkeit erfasst werden.

Die Echtzeit-Fähigkeit ist unabhängig von der Anzahl der Messtaster, da jede Irinos-Box einen eigenen Messwert-Puffer hat.

3.4 Master vs. integrierter Master vs. Slave

Jedes Irinos-System verfügt über genau eine Master-Box. Dies ist diejenige Irinos-Box mit der Ethernet-Schnittstelle zum PC. Alle anderen (optionalen) Irinos-Boxen werden als Slave-Box bezeichnet.

Jedes Irinos-System hat genau eine Master-Box. Mehrere Master-Boxen sind nicht zulässig.

Eine Master-Box hat eine <u>Ethernet-Schnittstelle</u>^{D82} (M12, wasserblau) und eine <u>ILink-Schnittstelle</u>^{D80} (2x SUB-D 15-pol).

Eine Slave-Box hat nur eine <u>ILink-Schnittstelle</u>^{D80}.

Bei der Master-Box wird zwischen einer reinen Master-Box und einem sogenannten "integrierten Master" unterschieden.

Bei einer reinen Master-Box (<u>IR-MASTER</u>^{D40}) liegt der Schwerpunkt auf der Master-Funktionalität, d.h. der Kommunikation zum PC. Sie verfügt je nach Typ über digitale Ein-/Ausgänge und analoge Eingänge. Sie wird typischerweise nie alleine verwendet, sondern immer mit einer Slave-Box kombiniert.

Der <u>integrierte Master^{D46}</u> ist eine Mess-Box mit integrierter Ethernet-Schnittstelle. Wenn nur wenige Messeingänge verwendet werden, dann kann sie auch die einzige Box eines Irinos-Systems sein.

Für den PC bzw. die Messrechner-Software spielt es keine Rolle, welcher Typ verwendet wird.

Welcher Master-Typ verwendet wird, hängt von den jeweiligen Anforderungen an das Messsystem sowie ggf. von den Forderungen des Endkunden ab. Folgende Tabelle zeigt die wichtigsten Vorteile beider Varianten:

Master	Integrierter Master
 Einfache Instandhaltung: Alle Mess-Boxen eines Eingangs- Typs sind Slave-Boxen und damit identisch -> einfachere Lagerhaltung von Ersatz- Boxen. 	 Keine Zusatzkosten für separaten Master. 2 digitale Ein-/Ausgänge, z.B. für Fuß- oder Handtaster
 Variante mit je 4 vollwertigen digitalen Ein-/Ausgängen und 3 vollwertigen analogen Eingängen ±10V verfügbar. 	
 Anschluss zusätzlicher digitaler Ein-/Ausgänge über IO-Bus. 	
 Etwas höherer Datendurchsatz zum PC bei schnellen Messungen mit vielen Messkanälen. 	
 7-Segment-Anzeige am Master vereinfacht die Diagnose. 	

3.5 Digitale Ein-/Ausgänge (Bit-I/O)

Das Irinos-System kann um digitale Ein-/Ausgänge ergänzt werden. Diese sind gedacht um beispielsweise Handtaster, Fußtaster, Näherungsschalter, etc. in die Messrechner-Software einzubinden und/oder Lampen, Ventile, etc. anzusteuern.

Genauso kann bei entsprechender Verdrahtung ein Datenaustausch zwischen einer SPS und der Messrechner-Software darüber erfolgen (z.B. Messen Start, Messen Ende, Messergebnis ok, Ausschuss, usw.). Irinos-Boxen für den direkten Datenaustausch zwischen SPS und Messrechner via ProfiNet oder Profibus sind in Vorbereitung.

Die Geschwindigkeit der Bit I/O Funktion ist auf zwei Arten beschränkt:

- Sie hängt von der Geschwindigkeit des Messrechners / PCs ab. Sie wird normalerweise nicht durch die Hardware beschränkt, sondern vielmehr durch die Echtzeitfähigkeiten der Betriebssysteme.
- Sie hängt von der Übertragungsgeschwindigkeit der Kommunikationskanäle zwischen der Irinos-Box und dem Messrechner / PC ab.

Beachten Sie deshalb:

Die digitalen Ein-/Ausgänge des Irinos-Systems können keine vollwertige SPS ersetzen und sind nicht Echtzeit-fähig.

Obwohl es möglich sein kann einen Messaufbau oder sogar eine kleine Maschine zu steuern, sollte dies für jede Anwendung getestet werden.

Für digitale Ein-/Ausgänge gibt es zwei Systeme:

- a) Die digitalen Ein-/Ausgänge sind direkt in Irinos-Boxen integriert. Dies ist beispielsweise bei den Irinos-Boxen $\underline{\text{IR-MASTER-KB1}}^{D_{49}}$ oder $\underline{\text{IR-DIO}}^{D_{61}}$ der Fall.
- b) Es werden separate <u>I/O-Boxen^{D72}</u> über den <u>IO-Bus^{D99}</u> angeschlossen. Der Anschluss an den IO-Bus erfolgt über das Irinos-Modul <u>IR-MASTER^{D49}</u>.
 An den IO-Bus können maximal 4 I/O-Boxen angeschlossen werden (maximal je 64 digitale Ein- bzw. Ausgänge).

Beide Systeme können kombiniert werden.

3.6 Spannungsversorgung

Alle Irinos-Boxen werden über eine gemeinsame 24 V – Spannung

versorgt. Diese Spannung wird an einer ILink-Steckverbindung in das Irinos-System eingespeist. Über das ILink-Kabel wird sie zu den anderen Irinos-Boxen durchgeschleift.

Eine Ausnahme bilden:

- Die Irinos-Boxen f
 ür digitale Ein-/Ausg
 änge (<u>IR-DIO</u>^{D61}): hier muss die 24 V – Versorgung f
 ür die Ein-/Ausg
 änge bei manchen Varianten separat eingespeist werden.
- Die über den IO-Bus angeschlossenen <u>I/O-Boxen^{D72}</u>. Diese haben je nach Typ eine integrierte Spannungsversorgung oder benötigen eine separate Spannungsversorgung.

Für die Spannungsversorgung werden die Netzteile $\underline{\text{IR-PU}}^{\text{D70}}$ verwendet.

Die für die Messung sowie die Kommunikation benötigten Spannungen werden intern über galvanisch getrennte DC/DC-Wandler und ggf. nachgeschaltete Linearregler erzeugt (siehe Abbildung). Dies bedeutet, dass die internen Spannungen mehrerer Irinos-Boxen komplett voneinander getrennt sind. Die Störimmunität wird dadurch erhöht. Dies ist eine Voraussetzung für präzise Messergebnisse. Darüber hinaus wird die Entstehung von Masseschleifen damit verhindert.

Bitte beachten Sie dennoch, dass eine stabile und störungsarme 24 V – Versorgung Voraussetzung für einen störungsfreien Betrieb des Irinos-Systems ist.

3.7 Befestigung

Um verschiedenen Einbausituationen gerecht zu werden, sind für das Irinos-System mehrere Befestigungsmöglichkeiten verfügbar:

 Öber <u>2 rückseitig integrierte Gewindehülsen</u>^{D¹¹³} M4 kann jede Irinos-Box direkt von hinten festgeschraubt werden, z.B. an eine Blechwand.

Für diese Befestigungsart sind keine zusätzlichen Befestigungselemente erforderlich. Die Abmessungen finden Sie in den <u>technischen Daten D^{22} </u>.

Die Rückseite sollte bei dieser Befestigungsart zugänglich sein, damit im Service-Fall ein einfacher Tausch einer Irinos-Box möglich ist.

- ö Über den <u>Befestigungsflansch IR-MFFM-1</u>^{D™} kann eine Irinos-Box von vorne montiert werden, z.B. in einem Schaltschrank.
- Über den <u>Hutschienen-Adapter IR-MHRM-1</u>^D[™] kann eine Irinos-Box auf einer Standard-Hutschiene montiert werden.
- Öber einen <u>Befestigungswinkel IR-MITEM-40</u>^{D115} kann eine Irinos-Box direkt auf ein 40x40mm Aluminium-Profil des Herstellers Item (oder kompatible) montiert werden.

Alle Befestigungsarten können gemischt werden. D.h. es kann beispielsweise eine Irinos-Box <u>IR-MASTER</u>^{D49} im Schaltschrank per Befestigungsflansch IR-MFFM-1 befestigt werden. Eine weitere Irinos-Box vom Typ <u>IR-TFV</u>^{D52} wird direkt an der Mess-Vorrichtung über die rückseitigen Gewindehülsen befestigt.

Über den <u>Montage-Ständer IR-MWIP-40</u>^D kann in Verbindung mit einem 40x40mm Item-Profil und Befestigungswinkeln vom Typ IR-MITEM-40 ein Montageständer realisiert werden. Mit diesem kann ein Irinos-System beispielsweise auf einem Tisch befestigt werden.

Die Breite des Montage-Ständers leitet sich aus der Länge des Item-Profils ab, d.h. der Ständer kann auf die benötigt Anzahl an Irinos-Boxen angepasst werden.

3.8 Komponenten-Übersicht

Die folgenden Tabellen geben eine Übersicht über die für das Irinos-System verfügbaren Komponenten.

Das Irinos-System wird kontinuierlich erweitert. Alle verfügbaren

Komponenten sind in der aktuellsten Version dieser Bedienungsanleitung aufgeführt.

Übersicht Irinos-Boxen				
Artikel- Nr.	Bezeichnung	Тур	Ein- / Ausgänge	
IR-MAS	IR-MASTER ^{D49} zur Kommunikation mit dem PC			
828- 5000	IR-MASTER - KB1-68-68-3- SYSP-ETHIL	Master	∘ IO-Bus über M8 ∘ 4 digitale Eingänge über	
			2x M12	
			 4 digitale Ausgange über 2x M12 	
			 ○ 3 analoge Eingänge ±10V über 3x M16 7-pol. 	
828- 5001	IR-MASTER - IOB-64-64-0- SYSP-ETHIL	Master	IO-Bus über M8	
<u>IR-TFV</u> D	IR-TFV ^{D52} für induktive Wegaufnehmer			
828- 5002	IR-TFV -8-TESA- M16-ETHIL	Integrier ter Master	 8 Eingänge für Messtaster Tesa Halbbrücke 	
			 o 2 digitale Eingänge über 1x M12, z.B. für Taster 	
828- 5003	IR-TFV -8-TESA- M16-IL	Slave	8 Eingänge für Messtaster Tesa Halbbrücke	
828- 5004	IR-TFV -8-TESA- KF27-IL	Slave	8 Eingänge für Messtaster Tesa Halbbrücke , extern gesteckt über Anschlussbox (Schnellwechselsystem)	
828-	IR-TFV-8-TESA-	Slave	8 Eingänge für Messtaster	

Artikel- Nr.	Bezeichnung	Тур	Ein- / Ausgänge
5005	M16IP-IL		Tesa Halbbrücke mit Steckverbindern in Schutzart IP65
828- 5006	IR-TFV -8-IET- M16-ETHIL	Integrier ter Master	 8 Eingänge für Messtaster Knäbel IET 2 digitale Eingänge über 1x M12, z.B. für Taster
828- 5007	IR-TFV -8-IET- M16-IL	Slave	8 Eingänge für Messtaster Knäbel IET
828- 5008	IR-TFV -8-IET- KF27-IL	Slave	8 Eingänge für Messtaster Knäbel IET , extern gesteckt über Anschlussbox (Schnellwechselsystem)
828- 5009	IR-TFV -8-IET- M16IP-IL	Slave	8 Eingänge für Messtaster Knäbel IET mit Steckverbindern in Schutzart IP65
828- 5028	IR-TFV -8-FEINP- M16-ETHIL	Integrier ter Master	 8 Eingänge für Messtaster Feinprüf Halbbrücke
			 2 digitale Eingänge über 1x M12, z.B. für Taster
IR-AIN ^{D56} mit Analogeingängen ±10V			
828- 5010	IR-AIN -8-D10- M16-ETHIL	Integrier ter Master	 8 analoge Eingänge ±10V, jeweils über M16 7-pol.
			 o 2 digitale Eingänge über 1x M12, z.B. für Taster
828-	IR-AIN-8-D10-	Slave	8 analoge Eingänge ±10V,

Artikel- Nr.	Bezeichnung	Тур	Ein- / Ausgänge
5011	M16-IL		jeweils über M16 7-pol.
828- 5012	IR-AIN -8-D10- M16IP-IL	Slave	8 analoge Eingänge ±10V, jeweils über M16 7-pol. mit Steckverbindern in Schutzart IP65
IR-INC ^{D58} für Inkrementalgeber 1Vss oder TTL / RS422			
828- 5013	IR-INC -4- SEL1VSS- DSUB15F-ETHIL	Integrier ter Master	 4 Eingänge für Inkrementalgeber 1Vss oder TTL/RS422 über DSUB 15-pol.: vorkonfiguriert für 1Vss 2 digitale Eingänge über 1x M12, z.B. für Taster
828- 5014	IR-INC -4- SEL1VSS- DSUB15F-IL	Slave	4 Eingänge für Inkrementalgeber 1Vss oder TTL/RS422 über DSUB 15-pol.: vorkonfiguriert für 1Vss
828- 5015	IR-INC -4- SELTTL- DSUB15F-ETHIL	Integrier ter Master	 4 Eingänge für Inkrementalgeber 1Vss oder TTL/RS422 über DSUB 15-pol.: vorkonfiguriert für TTL/ RS422 2 digitale Eingänge über 1x M12, z.B. für Taster
828- 5016	IR-INC -4- SELTTL- DSUB15F-IL	Slave	4 Eingänge für Inkrementalgeber 1Vss oder TTL/RS422 über DSUB 15-pol.: vorkonfiguriert für TTL/RS422
IR-DIO ^{D61} mit digitalen Ein-/Ausgängen			

Artikel- Nr.	Bezeichnung	Тур	Ein- / Ausgänge
828- 5019	IR-DIO -16-16- M23-EXTP-IL	Slave	 o 16 digitale Eingänge, jeweils 8 Stk. über M23 Steckverbinder
			 o 16 digitale Ausgänge, jeweils 8 Stk. über M23 Steckverbinder
			 Spannungsversorgung extern zugeführt (für hohe Ausgangsleistung)
828- 5022	IR-DIO -16-16- M23-SYSP-IL	Slave	 o 16 digitale Eingänge, jeweils 8 Stk. über M23 Steckverbinder
			 16 digitale Ausgänge, jeweils 8 Stk. über M23 Steckverbinder
			 Spannungsversorgung intern über ILink (für geringe Ausgangsleistung)
828- 5020	IR-DIO -16-16- D37-EXTP-IL	Slave	16 digitale Eingänge und 16 digitale Ausgänge über DSUB 37-pol.
			Klemmanschluss über Adapter
828- 5021	Klemmanschlus s für IR-DIO-16-16- D37-IL		Aufsetzmodul für Art. 828- 5020
IR-HMI1 ^{D64} Bedienbox			
828- 5029	IR-HMI1 -6-NA- MPA-0-0-IL	Slave	 ○ 6 frei belegbare 22,5mm Drucktasten
Artikel- Nr.	Bezeichnung	Тур	Ein- / Ausgänge
-----------------	----------------------------	-----	--
			 Auswahl Maschinen- Nummer (1-99)
			 Auswahl Prüfplan- Nummer (1-99)
			 Folientastatur mit 4 Pfeiltasten + 3 Steuertasten (OK, #, ESC), jeweils frei verwendbar.
IR-PU	• Netzteil		
828- 5017	IR-PU -50-HWS- F		Industrie-Netzteil 50 Watt für Irinos-System, Schuko- Stecker (Typ F)
828- 5018	IR-PU -12-STK-C		Stecker-Netzteil 12 Watt für Irinos-System, Euro- Stecker (Typ C)

Übersicht Zubehör Befestigung und Beschriftung

Artikel -Nr.	Bezeichnung
Befestig	jung
828- 5041	IR-MHRM-1 Befestigungsadapter für Hutschiene
828- 5042	IR-MFFM-1 Befestigungsflansch für frontseitig zugängliche Befestigung
828- 5043	IR-MITEM-40 Befestigungswinkel für 40mm Item-Profil
828-	IR-MWIP-40 Montageständer für 40mm Item-Profil

Artikel -Nr.	Bezeichnung
5044	(Item-Profil und Befestigungswinkel IR-MITEM-40 sind nicht im Lieferumfang enthalten.)
Beschrif	ftung
828- 5040	IR-MIPL-8-ABB179 Beschriftungsträger für 8 Stk. Beschriftungsschilder Typ Murrplastik ABB 17x9 (Bestellnummer Murrplastik: 86421020).

Übersicht Irinos-Kabel

Artikel- Nr.	Bezeichnung	Länge [m]
ILink-Ka	abel IP40 zur Verbindung zweier Irinos-Boxe	n
828- 5055	IR-ILINK-002-IP40 ILink-Verbindungskabel	0,2
828- 5056	IR-ILINK-010-IP40 ILink-Verbindungskabel	1
828- 5057	IR-ILINK-020-IP40 ILink-Verbindungskabel	2
828- 5058	IR-ILINK-030-IP40 ILink-Verbindungskabel	3
828- 5059	IR-ILINK-050-IP40 ILink-Verbindungskabel	5
828- 5060	IR-ILINK-100-IP40 ILink-Verbindungskabel	10
ILink-Ka	abel IP65 zur Verbindung zweier Irinos-Boxei	n
828- 5061	IR-ILINK-002-IP65 ILink-Verbindungskabel	0,2

Artikel- Nr.	Bezeichnung	Länge [m]
828- 5062	IR-ILINK-010-IP65 ILink-Verbindungskabel	1
828- 5063	IR-ILINK-020-IP65 ILink-Verbindungskabel	2
828- 5064	IR-ILINK-030-IP65 ILink-Verbindungskabel	3
828- 5065	IR-ILINK-050-IP65 ILink-Verbindungskabel	5
828- 5066	IR-ILINK-100-IP65 ILink-Verbindungskabel	10
Etherne an einen	t-Kabel M12 RJ45 zum Anschluss des Irinos-Sys Standard RJ45-Port	stems
828- 5050	IR-CETH-RJ45-M12-010 Ethernet-Kabel	1
828- 5051	IR-CETH-RJ45-M12-020 Ethernet-Kabel	2
828- 5052	IR-CETH-RJ45-M12-050 Ethernet-Kabel	5
828- 5053	IR-CETH-RJ45-M12-100 Ethernet-Kabel	10
828- 5054	IR-CETH-RJ45-M12-150 Ethernet-Kabel	15
Anschlu	sskabel Schnellwechselsystem an IR-TFV ^{D52}	
828- 5067	K8F27-D25-030	3

Artikel- Nr.	Bezeichnung	Länge [m]	
828- 5068	K8F27-D25-050	5	
828- 5069	K8F27-D25-070	7	
828- 5070	K8F27-D25-100	10	
Verbind Rundste	Verbindungskabel für Irinos IO-Bus, 2xM8 Rundsteckverbinder		
828- 8013	Verbindungskabel für Irinos IO-Bus mit 2xM8 Rundsteckverbinder	1	
828- 8010	Verbindungskabel für Irinos IO-Bus mit 2xM8 Rundsteckverbinder	3	
828- 8011	Verbindungskabel für Irinos IO-Bus mit 2xM8 Rundsteckverbinder	5	
Verbindungskabel für Irinos IO-Bus, 1xM8 Rundsteckverbinder, 1xDSUB 9-pol.			
828- 8012	Verbindungskabel für Irinos IO-Bus mit 1xM8 Rundsteckverbinder und 1x DSUB 9-pol.	3	

Übersicht Anschluss-Kabel / -Stecker

Artikel- Nr.	Bezeichnung	Länge [m]
Alle Anga Lieferant	ben für Artikel-Nummern der jeweiligen Hersteller en ohne Gewähr.	/
M12 An	schluss-Kabel / Stecker für digitale Ein-/Ausg	jänge

Artikel- Nr.	Bezeichnung	Länge [m]
	Anschlusskabel M12 Stift 5-pol. A-codiert gerade, mit offenem Kabelende	1,5
	Hersteller: PhönixContact, Art. 1669767	
	Anschlusskabel M12 Stift 5-pol. A-codiert gerade, mit offenem Kabelende	3
	Hersteller: PhönixContact, Art. 1669770	
	Anschlusskabel M12 Stift 5-pol. A-codiert gerade, mit offenem Kabelende	5
	Hersteller: PhönixContact, Art. 1669783	
	Anschlusskabel M12 Stift 5-pol. A-codiert gerade, mit offenem Kabelende	10
	Hersteller: <u>PhönixContact, Art. 1683361</u>	
	Anschlussstecker M12 5-pol. A-codiert gerade, Feld-konfektionierbar	-
	Lieferanten z.B.: <u>Farnell, Art. 1606743</u> oder <u>RS</u> <u>Components, Art. 290-4601</u>	
M12 - A digitaler	nschluss-Kabel zur Spannungsversorgung de 1 Ein-/Ausgänge	r
	Anschlusskabel M12 Buchse 5-pol. A-codiert gerade, mit offenem Kabelende	1,5
	Hersteller: PhönixContact, Art. 1415683	
	Anschlusskabel M12 Buchse 5-pol. A-codiert gerade, mit offenem Kabelende	3
	Hersteller: PhönixContact, Art. 1415684	
	Anschlusskabel M12 Buchse 5-pol. A-codiert	5

Artikel- Nr.	Bezeichnung	Länge [m]	
	gerade, mit offenem Kabelende		
	Hersteller: PhönixContact, Art. 1453889		
	Anschlusskabel M12 Buchse 5-pol. A-codiert gerade, mit offenem Kabelende	10	
	Hersteller: PhönixContact, Art. 1415685		
M23 Ste	eckverbinder		
	Anschlussstecker M23 16-pol. gerade	-	
	Hersteller: PhönixContact, Art. 1619642		
DSUB-G	DSUB-Gehäuse IP65 (oder besser)		
	Gehäuse FWA2GA für DSUB15-pol., Schutzart IP67	-	
	Lieferant z.B. <u>Farnell, Art. 2433248</u> oder <u>RS</u> <u>Components, Art. 517-7616</u>		
	Gehäuse FWA4GA für DSUB37-pol., Schutzart IP67	-	
	Lieferant z.B. Farnell, Art. 2433250		
M16-St	eckverbinder 7-polig für analoge Eingänge		
	Anschlussstecker M16 7-pol. gerade, IP40	_	
	Lieferant z.B. <u>Farnell, ArtNr. 1122588</u> oder <u>RS</u> <u>Components, Art. 129-8595</u>		

Übersicht Schutzabdeckungen für Steckverbinder

Artikel- Nr.	Bezeichnung
Alle Anga Lieferante	ben für Artikel-Nummern der jeweiligen Hersteller / en ohne Gewähr.
	Schutzkappe für M16-Buchse, Kunstoff, Transparent
	Schutzkappe für M16-Buchse, Metall, verschraubt
	Schutzabdeckung / Schutzkappe für DSUB 15-polig Buchse, Schutzart IP20
	Lieferant z.B. <u>Conec, ArtNr. 160X10459X</u> oder <u>Conrad,</u> <u>ArtNr. 733018 - 62</u>
	Schutzkappe für M12 Buchse
	Lieferant z.B. <u>PhönixContact, ArtNr. 1553129</u>

Übersicht Anschlussboxen für Schnellwechselsystem für IR-TFV

Artikel -Nr.	Bezeichnung
<mark>Anschlu</mark>	<mark>ssboxen^{D52} für Tesa Halbbrücke (passend zu IR-TFV-</mark>
8-TESA	-KF27-IL)
820-	Anschlussbox AB8F27 Tesa zum indirekten Anschluss
2212	von 8 Messtastern Tesa Halbbrücke oder kompatibel
820-	Anschlussbox AB8F27 Tesa zum indirekten Anschluss
2210	von 4 Messtastern Tesa Halbbrücke oder kompatibel
Anschlu	<mark>ssboxen</mark> ^{D∞} für Knäbel IET (passend zu IR-TFV-8-
IET-KF2	27-IL)
820-	Anschlussbox AB8F27 Tesa zum indirekten Anschluss
2232	von 8 Messtastern Knäbel IET
820-	Anschlussbox AB8F27 Tesa zum indirekten Anschluss

Artikel -Nr.	Bezeichnung
2230	von 4 Messtastern Knäbel IET

Übersicht I/O-Boxen für Irinos IO-Bus

Artikel -Nr.	Bezeichnung		
<u>I/O-Boxen im Tischgehäuse^{D72} mit integriertem Netzteil,</u> Anschluss Rundstecker M8			
828- 1832	E/A-Box mit je 8 digitalen E/As, Anschluss über 2 Stk. M23-Stecker 16-pol., 50W-Netzteil 115 / 230 V AC integriert.		
828- 1834	E/A-Box mit je 16 digitalen E/As, Anschluss über 4 Stk. M23-Stecker 16-pol., 50W-Netzteil 115 / 230 V AC integriert.		
<u>I/O-Boxen als Hutschienen-Modul</u> ^{D74} , Anschluss DSUB 9-pol.			
828- 1812	E/A-Modul mit je 8 digitalen E/As für Hutschienen- Montage		
828- 1814	E/A-Modul mit je 16 digitalen E/As für Hutschienen- Montage		

Produktbeschreibungen

4 Produktbeschreibungen

Die Produktbeschreibungen geben eine Übersicht über die einzelnen Irinos-Boxen sowie verschiedenes Zubehör. Die Steckerbelegung sowie technische Details zu den einzelnen Anschlüssen finden Sie im Kapitel <u>Steckerbelegungen</u>^{D®}.

Die Artikelnummern zu den Komponenten finden Sie in der Komponenten-Übersicht \mathbb{D}^{32} .

4.1 Allgemein

Einige Irinos-Boxen sind in den Varianten <u>"integrierter Master" und</u> <u>"Slave"</u>^{D28} verfügbar. Sie unterscheiden sich lediglich durch den Kommunikationsteil. Der Messteil bleibt immer identisch. Folgende Abbildung zeigt dieses am Beispiel der Irinos-Box <u>IR-TFV</u>^{D52}:

Vergleich "integrierter Master" vs. "Slave"

Der **integrierte Master** hat eine <u>Status-LED</u>^{D47} zur Anzeige des System-Zustands, die <u>ILink-Schnittstelle</u>^{D80} zum Anschluss von Slave-Boxen, eine <u>Ethernet-Schnittstelle</u>^{D82} zum Anschluss des Irinos-Systems an den PC sowie <u>2 digitale Eingänge</u>^{D84}, z.B. für den Anschluss eines Fuß- oder Hand-Tasters:

Anschlüsse und Anzeigen des "integrierten Master"

Der Ethernet-Status wird neben der Ethernet-Buchse angezeigt: Die LED "Eth" leuchtet, wenn eine Ethernet-Verbindung aktiv ist. Sobald Daten übertragen werden, blinkt diese LED.

Eine **Slave-Box** hat eine <u>7-Segment-Anzeige</u>^{D48} zur Status-Anzeige und die <u>ILink-Schnittstelle</u>^{D80} zum Anschluss an die Master-Box sowie zur Kaskadierung weiterer Slave-Boxen:

Anschlüsse und Anzeige einer "Slave-Box"

4.1.1 Status-Anzeige via LED (integrierter Master)

Beim "integrierten Master" erfolgt die Status-Anzeige der Irinos-Box über die Status-LED. Folgende Tabelle zeigt die angezeigten Stati:

LED "Status"	Status
Langsames blinken (< 1 Hz)	Alles ok
Schnelles blinken (4 Hz)	Oszillator-Kurzschluss (nur bei <u>IR-TFV^{D 52})</u>
Dauerhaft an	<u>Ereignis</u> [□] [™] aktiv (z.B. Fehler).

Der Status bezieht sich dabei immer nur auf die Master-Box und nicht auf das gesamte Irinos-System.

Er kann auch vom PC aus ausgelesen werden (siehe $\underline{MscDll}^{\mathbb{D}^{10}}$).

4.1.2 Status-Anzeige via 7-Segment-Anzeige (Master & Slave)

Über die 7-Segment-Anzeige erfolgt die Status-Anzeige der Irinos-Box.

Im Normalfall zeigt die 7-Segment-Anzeige die Box-Nummer der Irinos-Box an. Diese wird bei der <u>Box-Adressierung</u>¹¹²⁰ vergeben. Wenn die Box-Nummer einstellig ist, dann gilt: während die Box-Nummer angezeigt wird, blinkt der Punkt der 7-Segment-Anzeige.

Sobald ein <u>Ereignis</u>^{D₁₀₀} auftritt, wird der Buchstabe F gefolgt von der Ereignis-Nummer angezeigt, z.B. F24 für eine Überlast / Kurzschluss der Inkrementalgeber-Versorgung bei der Irinos-Box <u>IR-INC</u>^{D₅₀}. Der Status kann auch vom PC ausgelesen werden (siehe <u>MscDII</u>^{D₁₀₀}).

Eine Besonderheit gilt nach dem Einschalten: hier werden auf der ersten Irinos-Box mit 7-Segment-Anzeige die IP-Informationen der Netzwerk-Schnittstelle einmalig angezeigt. Bei einem Master ist dies die Anzeige des Masters selbst. Bei einem integrierten Master ist dies die Anzeige der ersten Slave-Box.

Ist der DHCP-Server aktiviert, wird nur "dHCP" angezeigt, ansonsten die IP-Adresse und Subnetzmaske.

[Anmerkung: Ist bei einem integrierten Master keine Slave-Box vorhanden, können die IP-Informationen nicht angezeigt werden.]

4.2 IR-MASTER zur Kommunikation mit dem PC

Die Hauptaufgabe der Irinos-Box IR-MASTER ist die Kommunikation mit dem PC. Sie ist in zwei <u>Varianten</u>^{D33} verfügbar:

- \circ Die Variante **IR-MASTER-IOB**-64-64-0-SYSP-ETHIL hat einen Anschluss für den IO-Bus. Dieser ermöglicht eine Anbindung externer I/O-Boxen mit digitalen Ein-/Ausgängen. Diese sind als <u>Tisch-^D</u>⁷² und <u>Hutschienen</u>^D⁷⁴-Version verfügbar.
- Die Variante IR-MASTER-KB1-68-68-3-SYSP-ETHIL verfügt zusätzlich über 4 digitale Eingänge und 4 digitale Ausgänge sowie über 3 Analogeingänge ±10V (Abbildung).

Die Zusammensetzung der Gerätebezeichnung ist wie folgt:

Schnittstellen-Übersicht IR-MASTER-KB1

Schnittstellen

Die Irinos-Box IR-MASTER hat (je nach Ausführung) folgende Schnittstellen:

- o <u>7-Segment-Anzeige</u>^{□48}
- \circ <u>ILink-Schnittstelle</u>^{D 80} zum Anschluss weiterer Slave-Boxen
- \circ <u>Ethernet-Schnittstelle</u>^{D82} zur Verbindung mit dem PC
- o <u>2x2 digitale Eingänge</u>^{Ds5} sowie <u>2x2 digitale Ausgänge</u>^{Ds7}
- <u>3 analoge Eingänge ±10V^{D95}</u>
- o <u>IO-Bus</u>^{D99} Anschluss zum Anschluss von I/O-Boxen

Ethernet-LEDs

Die Ethernet-LEDs haben folgende Bedeutung:

LED "Speed"	Status
Aus	Verbindungsgeschwindigkeit 10 MBit/s

LED "Speed"	Status
Dauerhaft an	Verbindungsgeschwindigkeit 100 MBit/s

LED "Link"	Status
Aus	Keine Ethernet-Verbindung aktiv
Dauerhaft an	Ethernet-Verbindung aktiv, kein Datentransfer
Blinken	Ethernet-Verbindung mit aktivem Datentransfer

IO-Bus

Der IO-Bus wird intern immer als 64 digitale Ein- / Ausgänge abgebildet. D.h. wird eine Irinos-Box IR-MASTER verwendet, sind die ersten 64 digitalen Eingänge dem IO-Bus fest zugeordnet. Gleiches gilt für die digitalen Ausgänge. Dies gilt auch dann, wenn am IO-Bus keine I/O-Box angeschlossen ist.

Die jeweils 4 integrierten digitalen Ein- / Ausgänge werden dann intern als Ein- / Ausgang 65..68 gezählt.

Jeder der integrierten Ein- / Ausgänge hat eine zusätzliche Status-LED. Diese leuchtet, wenn der jeweilige Ein- / Ausgang den High-Zustand hat.

Analoge Eingänge

Die analogen Eingänge werden intern **synchron abgetastet** (kein Multiplexing).

Sie haben technisch bedingt nie exakt denselben Messwert bei identischem Eingangssignal. Um einen problemlosen Wechsel des Eingangs-Kanals bzw. einen Tausch der Irinos-Box zu ermöglichen, werden die analogen Eingänge werksseitig digital vorabgeglichen. Der Abgleich erfolgt so, dass bei einem Eingangssignal von -10V der Messwert -32.000 geliefert wird, bei 0V der Messwert 0 und bei +10V der Messwert +32.000.

Da die analogen Eingänge sehr hochohmig sind, kann der Messwert ≠ 0 sein und stark schwanken, wenn kein Eingangssignal angeschlossen ist. Dies ist kein Fehlverhalten, sondern eine technisch bedingte Folge der hochwertigen Eingangs-Eigenschaften.

4.3 IR-TFV für induktive Wegaufnehmer / Messtaster

Die Irinos-Box IR-TFV ist für den Anschluss von 8 induktiven Wegaufnehmern / Messtastern geeignet. Jede Irinos-Box ist dabei auf einen Messtaster-Typ optimiert. Der unterstützte Messtaster-Typ kann der Beschriftung auf der Frontseite entnommen werden.

Desweiteren sind verschiedene <u>Anschlussvarianten^{D₃₃} verfügbar</u>:

- Bei den Anschlussvarianten <u>M16 und M16IP</u>^{D™} werden die Messtaster direkt in die Irinos-Box gesteckt.
 Bei der Variante M16IP werden M16-Buchsen zur Erreichung der Schutzklasse IP65 verwendet. Bitte beachten Sie, dass diese nur Sinn machen, wenn die Messtaster-Steckverbinder diese Schutzklasse ebenfalls unterstützen.
- Bei der Anschlussvariante <u>KF27</u>^{D™} werden die Messtaster über eine separate <u>Anschlussbox</u>^{D43} an die Irinos-Box angeschlossen.

Die Zusammensetzung der Gerätebezeichnung ist wie folgt:

Produktbeschreibungen

Schnittstellen-Übersicht "IR-TFV-8-x-M16-x" und "IR-TFV-8-x-M16IP-x"

Schnittstellen-Übersicht "IR-TFV-8-x-KF27-x"

Irinos-Box IR-TFV mit separater Anschlussbox

Schnittstellen

Die Irinos-Box IR-TFV hat folgende Schnittstellen:

- \circ 8 Eingänge für induktive Messtaster, direkt gesteckt (<u>M16</u>^{D™}) oder indirekt gesteckt (<u>KF27 / DSUB25</u>^{D™}).
- Die Beschreibung des Kommunikationsteils entnehmen Sie der allgemeinen Übersicht^{D46}.

Sinus-Oszillator / XSync Oszillator-Synchronisation

Induktive Wegaufnehmer benötigen ein Sinus-Erreger – Signal. Dieses wird durch einen Sinus-Oszillator von der Irinos-Box erzeugt. Alle Messeingänge einer Irinos-Box haben einen **gemeinsamen Sinus-Oszillator**. Um ein besonders genaues Messergebnis zu ermöglichen, erfolgt die Erzeugung des Signals so, dass dieses frei von jeglichen Gleichstromanteilen ist.

Bei einer Überlast oder einem Kurzschluss des Sinus-Erreger – Signals, z.B. bei einem Taster-Defekt, wird der Sinus-Oszillator automatisch abgeschaltet und dieses <u>Ereignis</u>^D[™] über folgende Wege gemeldet:

- \circ Die <u>Status-LED</u>^{D47} blinkt sehr schnell (integrierter Master).
- \circ Auf der <u>7-Segment Anzeige</u>^{D48} wird der Text OSC angezeigt (Slave-Box).
- Durch die <u>Messwert-Manipulation bzw. über den durch die</u> <u>Messrechner-Software auslesbaren Hardware-Status</u>^{D^{III}}.

Die Irinos-Box prüft zyklisch, ob der Kurzschluss beseitigt wurde. Falls ja, läuft der Oszillator automatisch wieder an.

Bei schwierigen Verkabelungsverhältnissen, wie sie beispielsweise in Messdornen vorhanden sind, können phasenverschobene Sinus-Erreger – Signale eine gegenseitige Störung der Messsignale verursachen.

Da alle Messeingänge einer Irinos-Box IR-TFV denselben Sinus-Oszillator haben, besteht diese Gefahr hier nicht. Mit der zum Patent angemeldeten XSync-Technologie werden die Sinus-Erreger – Signale auch über mehrere Irinos-Boxen IR-TFV hinweg miteinander synchronisiert (Oszillator-Synchronisation). Das Irinos-System ist damit auch für schwierige Verkabelungsverhältnisse geeignet.

Messwert-Erfassung

Alle Messeingänge werden **synchron abgetastet** (kein Multiplexing). Das Messverfahren berücksichtigt das vollständige Messsignal (d.h. integrierende Messung). Dieses Verfahren hat im Vergleich zur häufig eingesetzten 1-Punkt- oder 2-Punkt-Abtastung den Vorteil, dass seine Störempfindlichkeit viel besser ist. Der bei diesem Messverfahren eingesetzte analoge Filter ist auf die mechanischen Eigenschaften des jeweiligen Messtasters ausgelegt.

Technisch bedingt haben verschiedene Eingangskanäle nie exakt denselben Messwert bei identischem Eingangssignal. Um einen problemlosen Wechsel des Eingangs-Kanals bzw. einen Tausch der Irinos-Box zu ermöglichen, werden die Messeingänge deshalb werksseitig digital vorabgeglichen. Der Abgleich erfolgt so, dass maximaler negativer Nennauslenkung der Messwert -32.000 geliefert wird, in der Messtaster-Mitte der Messwert 0 und bei maximal positiver Nennauslenkung der Messwert +32.000.

Digitalwe rt	Taster-Auslenkung Tesa Halbbrücke	Taster-Auslenkung Knäbel IET
- 32.000	- 2000 µm	- 200 µm
0	0 µm	0 µm
+32.000	+ 2000 µm	+ 200 μm

Anschlussvariante KF27 für externe Anschlussbox

Bei der Anschlussvariante KF27 für die externe Anschlussbox ist es möglich, dass Anschlusskabel auf Seite der Anschlussbox während des Betriebes abzuziehen bzw. zu stecken. Damit können beispielsweise Messvorrichtungen während des Betriebes getauscht werden ohne dass das Irinos-System neu gestartet werden muss.

4.4 IR-AIN mit Analogeingängen ±10V

Die Irinos-Box IR-AIN ist für den Anschluss von 8 Analog-Signalen $\pm 10V$ geeignet. Sie ist in einer <u>Standard-Ausführung</u>^{D34} und in einer Ausführung mit IP65-Steckverbindern erhältlich.

Die Zusammensetzung der Gerätebezeichnung ist wie folgt:

Schnittstellen-Übersicht "IR-AIN"

Schnittstellen

Die Irinos-Box IR-AIN hat folgende Schnittstellen:

- o 8 <u>Analog-Eingänge</u>^{D₉₅} ±10V
- Die Beschreibung des Kommunikationsteils entnehmen Sie der allgemeinen Übersicht^{D₄6}.

Messwert-Erfassung

Die analogen Eingänge werden intern **synchron abgetastet** (kein Multiplexing).

Sie haben technisch bedingt nie exakt denselben Messwert bei identischem Eingangssignal. Um einen problemlosen Wechsel des Eingangs-Kanals bzw. einen Tausch der Irinos-Box zu ermöglichen, werden die analogen Eingänge werksseitig digital vorabgeglichen. Der Abgleich erfolgt so, dass bei einem Eingangssignal von -10V der Messwert -32.000 geliefert wird, bei 0V der Messwert 0 und bei +10V der Messwert +32.000.

Da die analogen Eingänge sehr hochohmig sind, kann der Messwert ≠ 0 sein und stark schwanken, wenn kein Eingangssignal angeschlossen ist. Dies ist kein Fehlverhalten, sondern eine technisch bedingte Folge der hochwertigen Eingangs-Eigenschaften.

4.5 IR-INC für Inkrementalgeber 1Vss oder TTL / RS422

--> Beachten Sie unbedingt die <u>Applikationshinweise</u>^{D²²} für Inkrementalgeber.

Die Irinos-Box IR-INC ist für den Anschluss von 4 Inkrementalgebern geeignet.

Jeder Eingang kann per Software auf den Inkrementalgeber-Typ 1Vss oder den Inkrementalgeber-Typ TTL / RS422 konfiguriert werden. Die aktuelle Eingangs-Konfiguration wird durch <u>LEDs</u>^{D59} neben dem Steckverbinder angezeigt. Die Umschaltung kann über folgende Wege erfolgen:

- Über das Irinos-Tool. Details dazu entnehmen Sie dem Benutzerhandbuch f
 ür das Irinos-Tool.
- Von der Messrechnersoftware über einen Konfigurationsbefehl (siehe Referenz-Handbuch der MscDll).

Ab Werk sind die Eingänge je nach <u>Variante^D</u> für 1Vss oder TTL/ RS422 vorkonfiguriert.

Die Gerätebezeichnung setzt sich wie folgt zusammen:

Schnittstellen-Übersicht "IR-INC"

Schnittstellen

Die Irinos-Box IR-AIN hat folgende Schnittstellen:

- o 4 Inkrementalgeber-Eingänge^D¹⁰⁵
- Die Beschreibung des Kommunikationsteils entnehmen Sie der allgemeinen Übersicht^{D46}.

Für die <u>ILink-Schnittstelle</u>^{D80} wird derselbe Steckverbinder wie für die Inkrementalgeber-Eingänge verwendet.

Die Belegung des ILink-Steckverbinders ist so gewählt, dass Inkrementalgeber vom Typ 1Vss / TTL mit Standard-Belegung der Fa. Heidenhain nicht beschädigt werden, wenn sie versehentlich in die Buchse der ILink-Schnittstelle gesteckt werden. Bei Spezial-Gebern mit hiervon abweichender Belegung kann dies anders sein.

Stecken Sie Inkrementalgeber deshalb immer nur in die dafür vorgesehenen Eingangsbuchsen.

Inkrementalgeber-LEDs

Die Inkrementalgeber-LEDs haben folgende Bedeutung:

LED Stati	Status
Blau dauerhaft	Konfiguriert für 1Vss. Kein Inkrementalgeber- Fehler festgestellt.
Blau blinkend	Konfiguriert für 1Vss. Es ist ein Inkrementalgeber-Fehler aufgetreten.
Gelb dauerhaft	Konfiguriert für TTL / RS422.

Spannungsversorgung

Die Inkrementalgeber werden über eine gemeinsame 5V – Spannung versorgt. Diese ist so ausgelegt, dass bei Verwendung der meisten Inkrementalgeber noch ausreichende Leistungsreserven vorhanden sind. Details zu den Leistungsdaten entnehmen Sie dem Datenblatt.

Die Spannungsversorgung ist kanalweise gegen Überlast / Kurzschluss geschützt. Tritt eine Überlast ein, wird die Spannungsversorgung des betroffenen Eingangskanals sofort abgeschaltet und dies als Fehler gemeldet. Sobald der Kurzschluss beseitigt wurde, wird die Spannungsversorgung automatisch wieder aktiviert.

Desweiteren ist die gemeinsame Spannungsversorgung gegen eine Gesamt-Überlast geschützt. Tritt eine Überlast ein, wird die Spannungsversorgung aller Eingangskanäle abgeschaltet und dies als Fehler gemeldet. Wenn dieser Fehler beseitigt wurde, muss die Irinos-Box neu gestartet werden.

Ein Fehler in der Spannungsversorgung ist wie folgt erkennbar:

- Das <u>Ereignis "F24"D</u>^{1™} wird aktiv. Bei Irinos-Boxen mit <u>7-Segment-Anzeige</u>^{D48} (Slave) erscheint die Ereignis-Meldung "F24".
- \circ Bei Irinos-Boxen mit <u>Status-LED</u>^{D47} (integrierter Master) bleibt die LED dauerhaft an.
- Das entsprechende Bit im Hardware-Status des betroffenen Messkanals wird gesetzt. Dieser kann durch die Messrechner-Software <u>ausgelesen^{D177}</u> werden (siehe Referenz-Handbuch der Kommunikations-DLL).

Messwert-Erfassung

Die Inkrementalgeber-Eingänge werden intern **synchron abgetastet**. Dabei spielt es keine Rolle, ob ein Inkrementalgeber für 1Vss oder für TTL / RS422 konfiguriert ist.

Fehlerüberwachung

Für den Inkrementalgeber-Typ 1Vss konfigurierte Eingänge haben eine kanalweise Fehlerüberwachung der Eingangssignale. Wenn alles ok ist, leuchtet die Inkrementalgeber-LED dauerhaft blau, ansonsten blinkt sie. Parallel dazu können Fehler auf folgende Wege erkannt werden:

- Die entsprechenden Bits im Hardware-Status des betroffenen Messkanals werden gesetzt. Dieser kann durch die Messrechner-Software <u>ausgelesen</u>^{D177} werden (siehe Referenz-Handbuch der Kommunikations-DLL).
- Das <u>Ereignis "F25"^D</u>[™] wird aktiv. Dessen Anzeige auf der 7-Segment-Anzeige ist standardmäßig deaktiviert. In den Diagnose-Speicher wird das Ereignis aber eingetragen.
- $_{\odot}$ Bei Irinos-Boxen mit <u>Status-LED</u>^{D47} (integrierter Master) bleibt die LED dauerhaft an.

Bei einem Inkrementalgeber-Fehler wird weiterhin ein Positionswert geliefert. Dieser kann gültig sein, muss aber nicht. Für einen zuverlässigen Betrieb der Messanlage muss daher immer der Hardware-Status durch die Messrechner-Software abgefragt, ausgewertet und entsprechend den Anforderungen der Applikation reagiert werden!

4.6 IR-DIO mit digitalen Ein-/Ausgängen

Die Irinos-Box IR-DIO ist für den Anschluss von jeweils 16 digitalen Ein-/Ausgängen geeignet. Sie ist in drei <u>Anschlussvarianten^{D35}</u> erhältlich:

- Mit 4 Anschlüssen M23 Buchse zum Anschluss externer Anschlussmodule. Die Spannungsversorgung für die Ein-/Ausgänge wird über einen M12-Steckverbinder eingespeist.
- Mit 4 Anschlüssen M23 Buchse zum Anschluss externer Anschlussmodule. Die Spannungsversorgung erfolgt über ILink (nur für geringe Lasten).
- Mit einem Anschluss DSUB 37-pol. zum direkten Anschluss.
 Über ein Adaptermodul (Art.-Nr. 828-5021) können die Ein-/ Ausgänge auch über Anschlussklemmen verdrahtet werden.

Die Gerätebezeichnung setzt sich wie folgt zusammen:

Schnittstellen-Übersicht "IR-DIO-16-16-M23-EXTP-IL"

Schnittstellen-Übersicht "IR-DIO-16-16-D37M-EXTP-IL"

Adaptermodul für Anschlussklemmen

Schnittstellen

Die Irinos-Box IR-DIO hat (je nach Variante) folgende Schnittstellen:

- o Je 16 digitale Ein-/Ausgänge über Steckverbinder <u>M23</u>^{D88} oder <u>DSUB37</u>^{D92}.
- $_{\odot}$ 24V Spannungsversorgung für digitale Ein-/Ausgänge über <u>M12^D $_{\odot}$ </u>.
- Die Beschreibung des Kommunikationsteils entnehmen Sie der allgemeinen Übersicht^{D46}.

Spannungsversorgung

Je nach Variante muss die 24V – Versorgung für die digitalen Ein-/ Ausgänge extern zugeführt werden. Bei der M23-Variante erfolgt dies über einen M12 – Steckverbinder; bei der DSUB-Variante erfolgt dies über den DSUB-Steckverbinder bzw. über die Klemmanschlüsse des Adaptermoduls.

Eine blaue LED zeigt an, ob die 24V – Versorgung vorhanden ist.

Verwenden Sie zur Spannungsversorgung nur ein Netzteil, das der Schutzklasse PELV entspricht.

Hinweis: Es ist möglich als Ein- / Ausgangsspannung 12 V DC zu verwenden. In diesem Fall leuchtet aber die Status LED nicht. Die Ein-/Ausgangs-LEDs leuchten nur schwach. Das Schaltverhalten der Ein-/Ausgänge bleibt unverändert.

Schutzfunktionen

Alle Ausgänge sind einzeln gegen Kurzschluss geschützt. Zusätzlich ist die interne Ausgangselektronik gegen thermische Überlast geschützt. Die verfügbare Ausgangsleistung entnehmen Sie dem Datenblatt.

4.7 IR-HMI1 Bedienbox

Die Irinos-Box IR-HMI1 ist eine universelle Bedienbox für das Irinos-Messsystem. Alle Funktionen sind über <u>Bit I/O</u>^{D172} ansteuerbar bzw. auslesbar. Aus Sicht des Irinos-Systems verhält sie sich wie eine Box mit 40 digitalen Ein- / Ausgängen.

Die Zusammensetzung der Gerätebezeichnung ist wie folgt:

Die Bedienbox bietet folgende Bedienelemente:

- o 6 Stk. 22,5mm Drucktasten, frei verwendbar, frei beschriftbar, jeweils beleuchtbar.
- Auswahl der Maschinen-Nummer (1-99) über 7-Segment -Anzeige und Tasten "+" und "-".
- Auswahl der Pr
 üfplan-Nummer (1-99)
 über 7-Segment Anzeige und Tasten "+" und "-".
- $_{\odot}$ 7 frei verwendbare Folientasten: 4 Pfeiltasten + "ESC" + "#" + "OK"

Die Bedienbox wird wie eine "normale" Irinos-Box über <u>ILink</u>^{D_{10}} mit dem Irinos-System verbunden. Hierüber wird sie auch mit Spannung versorgt.

Übersicht der Bedienelemente

Die Bit-Zuordnung ist wie folgt:

Bit-Nr.	Eingang	Ausgang
	(Irinos -> PC)	(PC -> Irinos
0	Drucktaste 1 (oben links)	Beleuchtung Drucktaste 1
1	Drucktaste 2 (oben mitte)	Beleuchtung Drucktaste 2
2	Drucktaste 3 (oben rechts)	Beleuchtung Drucktaste 3
3	Drucktaste 4 (unten links)	Beleuchtung Drucktaste 4
4	Drucktaste 5 (unten mitte)	Beleuchtung Drucktaste 5

Bit-Nr.	Eingang	Ausgang
	(Irinos -> PC)	(PC -> Irinos
5	Drucktaste 6 (unten rechts)	Beleuchtung Drucktaste 6
6	-	Reserviert
7	-	Reserviert
8	Folien-Taste "Pfeil links"	Vorgabe Prüfplan-Nr.
9	Folien-Taste "Pfeil rechts"	Vorgabe Prüfplan-Nr.
10	Folien-Taste "Pfeil hoch"	Vorgabe Prüfplan-Nr.
11	Folien-Taste "Pfeil runter"	Vorgabe Prüfplan-Nr.
12	Folien-Taste "ESC"	Vorgabe Prüfplan-Nr.
13	Folien-Taste "#"	Vorgabe Prüfplan-Nr.
14	Folien-Taste "OK"	Vorgabe Prüfplan-Nr.
15	-	Übernehme Vorgabe Prüfplan-Nr.
16	Reserviert	Vorgabe Maschinen- Nr.

Bit-Nr.	Eingang	Ausgang
	(Irinos -> PC)	(PC -> Irinos
17	Reserviert	Vorgabe Maschinen- Nr.
18	Reserviert	Vorgabe Maschinen- Nr.
19	Reserviert	Vorgabe Maschinen- Nr.
20	Reserviert	Vorgabe Maschinen- Nr.
21	Reserviert	Vorgabe Maschinen- Nr.
22	-	Vorgabe Maschinen- Nr.
23	-	Übernehme Vorgabe Maschinen-Nr.
24	Aktuelle Prüfplan-Nr.	Maximale Prüfplan- Nr.
25	Aktuelle Prüfplan-Nr.	Maximale Prüfplan- Nr.
26	Aktuelle Prüfplan-Nr.	Maximale Prüfplan- Nr.
27	Aktuelle Prüfplan-Nr.	Maximale Prüfplan- Nr.
28	Aktuelle Prüfplan-Nr.	Maximale Prüfplan-

Bit-Nr.	Eingang	Ausgang
	(Irinos -> PC)	(PC -> Irinos
		Nr.
29	Aktuelle Prüfplan-Nr.	Maximale Prüfplan- Nr.
30	Aktuelle Prüfplan-Nr.	Maximale Prüfplan- Nr.
31	-	Sperre Prüfplan- Auswahl
32	Aktuelle Prüfplan-Nr.	Maximale Maschinen- Nr.
33	Aktuelle Prüfplan-Nr.	Maximale Maschinen- Nr.
34	Aktuelle Prüfplan-Nr.	Maximale Maschinen- Nr.
35	Aktuelle Prüfplan-Nr.	Maximale Maschinen- Nr.
36	Aktuelle Prüfplan-Nr.	Maximale Maschinen- Nr.
37	Aktuelle Prüfplan-Nr.	Maximale Maschinen- Nr.
38	Aktuelle Prüfplan-Nr.	Maximale Maschinen- Nr.
39	-	Sperre Maschinen- Auswahl

Prüfplan- / Maschinen-Nr vorgeben

Die Prüfplan-Nr kann durch die Messrechner-Software vorgegeben werden. Dazu muss die Nummer zunächst über die Bits "Vorgabe Prüfplan-Nr." vorgegeben werden. Die Übernahme erfolgt anschließend durch eine steigende Flanke des Bits "Übernehme Vorgabe Prüfplan-Nr.".

Äquivalent gilt dies für die Maschinen-Nr.

Maximale Prüfplan- / Maschinen-Nr

Die maximale Prüfplan-Nr kann durch die Bits "Maximale Prüfplan-Nr." vorgegeben werden. Falls die aktuell ausgewählte Prüfplan-Nr. größer ist, wird sie automatisch auf den Maximalwert begrenzt. Ein Maximalwert von 0 bedeutet, dass die Begrenzung inaktiv ist.

Äquivalent gilt dies für die Maschinen-Nr.

Auwahl der Prüfplan- / Maschinen-Nr sperren

Die Auswahl der Prüfplan-Nr. kann durch ein aktives Bit "Sperre Prüfplan-Auswahl" gesperrt werden. Die Benutzung der Tasten "+" und "-" ist dann ohne Funktion.

Wenn die Auswahl gesperrt ist, ist der Punkt der 7-Segment-Anzeige aus. Andernfalls blinkt er.

Äquivalent gilt dies für die Maschinen-Nr.

Speichern der Prüfplan- / Maschinen-Nr

Nach einer Änderung der Prüfplan- bzw. Maschinen-Nr. wird dies in der Bedienbox permanent gespeichert (ca. 5s nach der letzten Änderung). Nach einem Neustart des Irinos-Systems werden die zuletzt ausgewählte Prüfplan- und Maschinen-Nr wieder angezeigt.

4.8 IR-PU Spannungsversorgung (Industrie-Version)

Maximale Maschinen-Nr.Vorgabe Maschinen-Nr.Die Irinos-Box IR-<u>PU-50-HWS-x^{D37}</u> ist ein 24V-Netzteil mit 50 Watt Nennleistung zur Versorgung des Irinos-Systems. Es ist für raue Industrie-Umgebung ausgelegt und hat eine lange Lebensdauer. 70

Als einzige Irinos-Box verfügt dieses Netzteil über keine echte <u>ILink-Schnittstelle</u>^{D80}. D.h. die ILink-Schnittstelle wird wie bei anderen Irinos-Boxen auch durch das Netzteil "durchgeschleift". Außer der 24V – Spannungsversorgung sind jedoch keine Leitungen an die ILink-Schnittstelle angeschlossen.

Wird das Irinos-Netzteil IR-PU-50-HWS-x als erste oder letzte Irinos-Box der ILink-Schnittstelle angeschlossen, dann darf die Kabellänge zur nächsten Irinos-Box max. 30cm betragen.

Das Netz-Anschlusskabel enthält den Schutzleiter (PE). Deshalb ist kein separater Schutzleiter-Anschluss erforderlich. Der Schutzleiter des Netz-Anschlusskabels muss aber zwingend verbunden sein. Die 24V Ausgangsspannung erfüllt dann die Anforderungen der Schutzklasse PELV.

Schnittstellen-Übersicht "IR-PU-50-HWS-x"

LEDs / Ausgangsleistung

Das Netzteil hat zwei LEDs:

- Die grüne Power-LED zeigt den Status der 24V Ausgangsspannung an. Sie leuchtet bei ordnungsgemäßem Betrieb dauerhaft.
- Die gelbe Last-LED ("High load") leuchtet, wenn der <u>Leistungsbedarf</u>^{D^{2™}} des angeschlossenen Irinos-Systems ca. 80% der Nennleistung beträgt (d.h. die LED leuchtet ab ca. 40 Watt Leistungsabgabe bei 50 Watt Nennleistung).

Auch wenn das Netzteil für den Dauerbetrieb bei voller Leistungsabgabe ausgelegt ist, so wird empfohlen das Netzteil nur *mit bis zu 80% der Nennlast dauerhaft zu betreiben*. Verwenden Sie daher ein stärkeres Netzteil, wenn die Last-LED dauerhaft leuchtet.

Die meisten Verbraucher haben keine konstante Leistungsaufnahme während des Betriebs. Deshalb sollte ein Netzteil nie voll ausgelastet werden.

Ein kurzzeitiges Aufleuchten der Last-LED während des Betriebs kann darauf hindeuten, dass das Netzteil kurzzeitig überlastet wird. Dies kann zu einem instabilen Betrieb des Irinos-Systems führen. Ein kurzes Aufleuchten der Last-LED nach dem Einschalten ist aufgrund des Einschaltstroms normal.

4.9 I/O-Boxen für den IO-Bus (Tischversion)

Die I/O-Boxen bieten die Möglichkeit an die Irinos-Box IR-MASTER zusätzliche digitale Ein-/Ausgänge anzuschließen. Sie sind mit dem Irinos-System über den IO-Bus verbunden.

Je nach <u>Variante^{D44}</u> hat eine I/O-Box jeweils 8 oder jeweils 16 digitale Ein- / Ausgänge.

Ein wesentliches Merkmal der I/O-Boxen in der Tischversion ist das integrierte 50 Watt – Netzteil. Dieses versorgt sowohl die interne Elektronik als auch die digitalen Ein-/Ausgänge.

Schnittstellen

Die I/O-Box hat folgende Schnittstellen:

 $_{\odot}$ Je 8 bzw. 16 digitale Ein-/Ausgänge über Steckverbinder <u>M23</u>^{D88}.

○ Anschluss f
ür <u>IO-Bus</u>^{D99}.

Netz-Anschluss

Das Netz-Anschlusskabel enthält den Schutzleiter (PE). Deshalb ist kein separater Schutzleiter-Anschluss erforderlich. Der Schutzleiter des Netz-Anschlusskabels muss aber zwingend verbunden sein. Die 24V Ausgangsspannung erfüllt dann die Anforderungen der Schutzklasse PELV.

Schutzfunktionen

Alle digitalen Ausgänge sind einzeln **gegen Überlast und Kurzschluss** geschützt. Zusätzlich ist die interne Ausgangselektronik gegen thermische Überlast geschützt. Die verfügbare Ausgangsleistung entnehmen Sie dem Datenblatt.

IO-Bus - Anschluss

Die I/O-Box verfügt über 2 IO-Bus Steckverbinder, damit mehrere I/ O-Boxen kaskadiert werden können. Beide Anschlüsse sind gleichwertig, d.h. es spielt keine Rolle welcher welche IO-Bus – Leitung an welchen Steckverbinder angeschlossen wird.

Wird nur eine Leitung angeschlossen, dann wird dies automatisch erkannt. Der IO-Bus wird dann automatisch terminiert. Dies wird durch eine leuchtende Terminierungs-LED signalisiert.

Die Auswahl der IO-Bus – Adresse (2, 4, 6 oder 8) erfolgt über den rückseitigen Drehschalter.

4.10 I/O-Boxen für den IO-Bus (Hutschienen-Version)

Die I/O-Boxen bieten die Möglichkeit an die Irinos-Box IR-MASTER zusätzliche digitale Ein-/Ausgänge anzuschließen. Sie sind mit dem Irinos-System über den $IO-Bus^{D_{101}}$ verbunden. Sie sind für die Montage auf einer Hutschiene gedacht, z.B. im Schaltschrank.

Je nach <u>Variante^{D44}</u> hat eine I/O-Box jeweils 8 oder jeweils 16 digitale Ein- / Ausgänge über Anschlussklemmen.

Die **Spannungsversorgung** wird über die Anschlussklemme PL5 zugeführt:

Pin	Bezeichnung	Bemerkung
1	GND_IO	Bezugsmasse für Ein-/Ausgänge
2	24V_OUTPUTS	24V Spannungsversorgung für digitale Ausgänge
3	GND	Bezugsmasse für das Modul
4	24V	24V Spannungsversorgung für das Modul
5	-	
6	PE	Schirm

Die Auswahl der **IO-Bus – Adresse** (2, 4, 6 oder 8) erfolgt über den DIP-Schalter SW1. Ist die I/O-Box die letzte am IO-Bus, muss die Terminierung über diesen DIP-Schalter aktiviert werden:

Schalter						Funktion		
1	2	3	4	5	6	7	8	
On								Terminierung aktiv
Off							Keine Terminierung	
	Off	Off	Off	Off	Off	On	Off	IO-Bus - Adresse 2
	Off	Off	Off	Off	On	Off	Off	IO-Bus - Adresse 4
	Off	Off	Off	Off	On	On	Off	IO-Bus - Adresse 6
	Off	Off	Off	On	Off	Off	Off	IO-Bus - Adresse 8

Schalter				Bemerkung
1	2	3	4	
Off	Off	On	Off	Soll-Position der Schalter

Der DIP-Schalter SW2 muss immer folgende Schalterstellung haben:

Steckerbelegungen

5 Steckerbelegungen

5.1 ILink-Schnittstelle (Master, integrierter Master & Slave)

→ Anschlusstyp: DSUB 15-pol. Buchse

Die ILink-Schnittstelle vereint Leitungen für die Spannungsversorgung und die Kommunikation zwischen den Irinos-Boxen in einem einzigen Kabel / Steckverbinder. Für einen störungsfreien Betrieb des Irinos-Systems ist deshalb eine hochwertige ILink-Verbindung mit spezifischen elektrischen Eigenschaften erforderlich. Verwenden Sie deshalb nur Kabel vom Typ IR-ILINK^{D38}.

Als Steckverbinder kommt eine 15-poliger DSUB-Buchse verwendet. In Verbindung mit dem passenden Gegenstecker kann mit dieser die Schutzart IP65 erreicht werden. Das ILink-Kabel ist deshalb in einer Standard-Version und in einer IP65-Version erhältlich.

Die Spannungsversorgung wird über die ILink-Schnittstelle eingespeist (siehe Abbildung). An allen anderen Pins des ILink-Steckverbinders darf keine Leitung angeschlossen sein, da es sonst zu störenden Reflexionen kommen kann.

Steckerbelegung Spannungsversorgung via ILink-Schnittstelle

Pin	Bezeichnung	Bemerkung
1	IL_Data1	Datenleitung 1

Pin	Bezeichnung	Bemerkung
2	IL_GND	Bezugsmasse für Datenleitungen (keine Verbindung zur Versorgungsmasse und zur internen Bezugsmasse der Irinos-Box)
3	IL_Data2	Datenleitung 2
4	-	
5	I_24V	24 V – Versorgung des Irinos-Systems. Muss bei der Spannungsversorgung mit Pin 6 verbunden sein.
6	I_24V	24 V – Versorgung des Irinos-Systems. Muss bei der Spannungsversorgung mit Pin 5 verbunden sein.
7	IL_Data3	Datenleitung 3
8	IStat	Detektions-Signal
9	IL_Data4	Datenleitung 4
10	-	
11	IL_Data5	Datenleitung 5
12	-	
13	I_GND	Bezugsmasse für Spannungsversorgung des Irinos-Systems. Muss bei der Spannungsversorgung mit Pin 15 verbunden sein.
14	IL_Data6	Datenleitung 6
15	I_GND	Bezugsmasse für Spannungsversorgung des Irinos-Systems.

Pin	Bezeichnung	Bemerkung
		Muss bei der Spannungsversorgung mit Pin 13 verbunden sein.

Die Belegung des ILink-Steckverbinders ist so gewählt, dass Inkrementalgeber vom Typ 1Vss / TTL mit Standard-Belegung der Fa. Heidenhain nicht beschädigt werden, wenn sie versehentlich in die Buchse der ILink-Schnittstelle gesteckt werden. Bei Spezial-Gebern mit hiervon abweichender Belegung kann dies anders sein.

Die Kommunikation der ILink-Schnittstelle basiert auf einem Bus-System, das am Anfang und am Ende jeweils durch einen Abschlusswiderstand terminiert werden muss. Diese <u>Terminierung</u> <u>erfolgt automatisch</u>^{D1*0}: das Irinos-System erkennt die erste und letzte Irinos-Box, in welchen die Terminierung zugeschaltet wird. Eine eingeschaltete Terminierung wird über die Terminierungs-LED zwischen den beiden ILink-Steckverbindern signalisiert.

Eine Ausnahme hiervon sind die Irinos-Netzteile vom Typ IR-PU. Sitzt ein Netzteil am Anfang oder am Ende der ILink-Verkabelung, dann darf die Kabellänge zur nächsten Irinos-Box nicht länger als 0,3m sein.

5.2 Ethernet (Master & integrierter Master)

→ Anschlusstyp: M12 4-pol. Buchse, D-codiert

Bei der Ethernet-Schnittstelle des Irinos-Systems handelt es sich um eine Standard Ethernet-Schnittstelle, wie sie beispielsweise auch in PCs integriert ist. Es werden die Datenraten 10 Mbit/s und 100 Mbit/ s unterstützt. Das Irinos-System kann dadurch mit praktisch jeder handelsüblichen Netzwerkschnittstelle verbunden werden.

Die Ethernet-Schnittstelle des Irinos-Systems hat eine "crossover"-Erkennung. Deshalb spielt es keine Rolle, ob ein Standard-Ethernet Kabel oder ein gekreuztes Kabel verwendet wird.

Als Steckverbinder wird am Irinos-System eine 4-poliger M12-Buchse (D-codiert) verwendet. Diese ist de-facto Industrie-Standard für Ethernet.

Steckerbelegung Ethernet-Schnittstelle

Pin	Bezeichnung	Bemerkung
1	TX+	Transmission Data+
2	TX-	Transmission Data-
3	RX+	Receive Data+
4	RX-	Receive Data-

Anschlusskabel

Passende Anschlusskabel sind von verschiedenen Herstellern erhältlich (z.B. Phönix Contact, Lapp, Murr Elektronik). Das Anschlusskabel muss der Kategorie Cat 5e oder besser entsprechen. Die Kabel von Phönix Contact haben den Vorteil, dass sie die "SpeedConn"-Verriegelung unterstützen. Diese ermöglicht eine schnelle Verriegelung des M12-Steckverbinders. Diese Kabel können unter der Produktgruppe IR-CETH^{D39} bezogen werden.

Die Gegenseite ist im Regelfall ein RJ45-Stecker. Bei Bedarf sind auch Kabel mit zweitem M12 oder anderweitigen Industrie-Steckverbindern erhältlich.

Die Ethernet-Schnittstelle ist zwar signal-technisch identisch mit Echtzeit-Schnittstellen wie beispielsweise ProfiNet, EtherCat oder Sercos. Sie ist jedoch nicht kompatibel zu deren Echtzeit-Erweiterungen.

Ethernet-Status / LEDs

Der Ethernet-Status wird neben der Ethernet-Buchse angezeigt: Die LED "Ethernet Link" leuchtet, wenn eine Ethernet-Verbindung aktiv ist. Sobald Daten übertragen werden, blinkt diese LED.

5.3 2 digitale Eingänge (integrierter Master)

→ Diese Beschreibung gilt für die digitalen Eingänge beim <u>integrierten Master^{D46}</u>, jedoch nicht für die Irinos-Box <u>IR-MASTER</u> ^{D49}. Diese unterscheiden sich in der Ausgangsleistung des 24V – Ausgangs. Ansonsten sind sie identisch.

→ Anschlusstyp: M12 5-pol. Buchse, A-codiert

Jeder "integrierte Master" hat 2 digitale Eingänge, die auf einem M12-Steckverbinder in de-facto Standardbelegung verfügbar sind.

Eine Besonderheit beim "integrierten Master" ist der 24V – Ausgang: Dieser ist intern über einen 1 KOhm – Widerstand mit der 24V-Versorgung des Irinos-Systems verbunden. Er ist damit geeignet um Taster oder Schalter zu versorgen, die an die digitalen Eingänge angeschlossen werden (z.B. Fußtaster, Handtaster).

Er ist nicht geeignet um Verbraucher, wie beispielsweise Näherungsschalter zu versorgen! Verwenden Sie hierfür eine separate Spannungsversorgung.

<u>Vorkonfektionierte Anschlusskabel</u>^{D40} für die digitalen Ein- / Ausgänge sind von verschiedenen Herstellern verfügbar. Aufgrund der SpeedCon-Verriegelung werden Kabel des Herstellers PhönixContact empfohlen. Vom Hersteller BRAD ist ein <u>Feld-</u> <u>konfektionierbarer M12 Stecker</u>^{D40} verfügbar (8A5006-315).

Steckerbelegung digitale Eingänge M12

Pin	Bezeichnung	Bemerkung
1	24V Out	24V Ausgang
-		Beachten Sie die Erläuterung im Text!
2	IN2	Digitaler Eingang 2
3	GND	Masse-Potential für die digitalen Eingänge
4	IN1	Digitaler Eingang 1
5	-	

5.4 Digitale Eingänge M12 (IR-MASTER)

→ Diese Beschreibung gilt für die digitalen Eingänge bei der Irinos-Box <u>IR-MASTER</u>^{D49}, jedoch nicht für den <u>integrierten Master</u>^{D46}. Diese unterscheiden sich in der Ausgangsleistung des 24V – Ausgangs. Ansonsten sind sie identisch.

→ Anschlusstyp: M12 5-pol. Buchse, A-codiert

Je 2 digitale Eingänge sind auf einem M12-Steckverbinder in de-facto Standardbelegung aufgelegt . Über den Pin "24V Out" können externe Komponenten, wie beispielsweise Handtaster, Fußtaster, Endschalter, usw. direkt versorgt werden. Dazu wird die 24V – Versorgung der <u>ILink-Schnittstelle</u>^{D80} verwendet.

Beachten Sie hierbei, dass die verfügbare Ausgangsleistung begrenzt ist (siehe Datenblatt). Desweiteren muss das <u>Netzteil^{D30}</u>, mit welchem das Irinos-System versorgt wird, die entsprechende Leistung bereitstellen können.

Vorkonfektionierte Anschlusskabel^{D40} für die digitalen Ein- / Ausgänge sind von verschiedenen Herstellern verfügbar. Aufgrund der SpeedCon-Verriegelung werden Kabel des Herstellers PhönixContact empfohlen. Vom Hersteller BRAD ist ein <u>Feld-</u> konfektionierbarer M12 Stecker^{D40} verfügbar (8A5006-315).

Steckerbelegung digitale Eingänge M12

Pin	Bezeichnung	Bemerkung
1	24V Out	24V Ausgang
2	IN2	Digitaler Eingang 2
3	GND	Masse-Potential für die digitalen Eingänge
4	IN1	Digitaler Eingang 1
5	-	

5.5 Digitale Ausgänge M12 (IR-MASTER)

→Anschlusstyp: M12 5-pol. Buchse, A-codiert

Je 2 digitale Ausgänge sind auf einem M12-Steckverbinder in defacto Standardbelegung aufgelegt. Über den Pin "24V Out" können externe Komponenten direkt versorgt werden.

Für die digitalen Ausgänge wird die 24V – Versorgung der <u>ILink-</u> <u>Schnittstelle</u>^{D®} verwendet. Beachten Sie hierbei, dass die verfügbare Ausgangsleistung begrenzt ist. Desweiteren muss das <u>Netzteil</u>^{D30}, mit welchem das Irinos-System versorgt wird, die entsprechende Leistung bereitstellen können.

<u>Vorkonfektionierte Anschlusskabel</u>^{D40} für die digitalen Ein- / Ausgänge sind von verschiedenen Herstellern verfügbar. Aufgrund der SpeedCon-Verriegelung werden Kabel des Herstellers PhönixContact empfohlen. Vom Hersteller BRAD ist ein <u>Feld-</u> <u>konfektionierbarer M12 Stecker</u>^{D40} verfügbar (8A5006-315).

Pin	Bezeichnung	Bemerkung
1	24V Out	24V Ausgang
2	OUT2	Digitaler Ausgang 2
3	GND	Masse-Potential für die digitalen Eingänge
4	OUT1	Digitaler Ausgang 1
5	-	

5.6 Digitale Ein- / Ausgänge M23 (IR-DIO-16-16-M23-xx-IL) sowie I/O-Boxen für IO-Bus

→ Anschlusstyp: M23 16-pol. Buchse

Je 8 digitale Ein- bzw. Ausgänge sind auf einem M23-Steckverbinder aufgelegt.

Ein <u>passender Gegenstecker</u>^{D42} ist beispielsweise vom Hersteller PhönixContact erhältlich.

Die M23 – Steckverbinder sind für den Anschluss von externen Anschlussmodulen gedacht, wie sie von verschiedenen Herstellern erhältlich sind (z.B. MurrElektronik, Turck, Weidmüller, PhönixContact, Erni, Escha).

Auf Anfrage können vorkonfektionierte Anschlussmodule als Ergänzung zum Irinos-System geliefert werden. Aufgrund der großen Typenvielfalt am Markt, gibt es kein Standardmodul.

Pin	Bezeichnung	Bemerkung
1	24V	24V Ausgang
2	IN1 / OUT1	Digitaler Ein-/Ausgang 1 bzw. 9
3	IN2 / OUT2	Digitaler Ein-/Ausgang 2 bzw. 10
4	IN3 / OUT3	Digitaler Ein-/Ausgang 3 bzw. 11
5	IN4 / OUT4	Digitaler Ein-/Ausgang 4 bzw. 12
6	PE	Schutzleiter (gilt nur für die separat versorgte Variante IR-DIO-16-16-D37- EXTP -IL)
7	IN5 / OUT5	Digitaler Ein-/Ausgang 5 bzw. 13
8	IN6 / OUT6	Digitaler Ein-/Ausgang 6 bzw. 14
9	IN7 / OUT7	Digitaler Ein-/Ausgang 7 bzw. 15
10	IN8 / OUT8	Digitaler Ein-/Ausgang 8 bzw. 16
11	GND	Masse-Potential für die digitalen Ein- bzw. Ausgänge
12 16	-	

5.7 Spannungsversorgung für digitale Ein-/Ausgänge M12 (IR-DIO-16-16-M23-EXTP-IL)

→ Anschlusstyp: M12 5-pol. Stecker, A-codiert

Über den M12 – Steckverbinder werden die digitalen Ein-/Ausgänge mit Spannung versorgt.

Verwenden Sie zur Spannungsversorgung nur ein Netzteil, dessen

Ausgangsspanung der Schutzklasse PELV entspricht!

<u>Vorkonfektionierte Anschlusskabel^{D41}</u> sind von verschiedenen Herstellern verfügbar, z.B. PhönixContact.

Pin	Bezeichnung	Bemerkung
1	24V In	24V Eingang
2	-	
3	GND	Masse-Potential für die digitalen Eingänge
4	-	
5	PE	Schutzleiter

5.8 Digitale Ein-/Ausgänge DSUB 37 (IR-DIO-16-16-D37-EXTP-IL)

→ Anschlusstyp DSUB 37-pol., Stift (Stecker)

Alle digitale Ein- / Ausgänge sind auf einem einzigen DSUB-Steckverbinder aufgelegt. Über denselben Steckverbinder erfolgt auch die Spannungsversorgung der digitalen Eingänge mit 24V (d.h. diese müssen eingespeist werden).

Wenn nur die digitalen Eingänge verwendet werden, so kann auf die Versorgung mit 24V verzichtet werden. Die Bezugsmasse GND muss aber auf jeden Fall angeschlossen werden.

Zur Erreichung der Schutzart IP65 sind geeignete <u>DSUB-Gehäuse</u>^{D42} des Herstellers FCT / Molex für den Anschlussstecker erforderlich.

Steckerbelegung DSUB37 für digitale Ein-/Ausgänge

Pin	Bezeichnung	Bemerkun g	Pin	Bezeichnung	
1	IN1	Eingang 1	20	OUT1	Ausgang 1

Pin	Bezeichnung	Bemerkun g	Pin	Bezeichnung	
2	IN2	Eingang 2	21	OUT2	Ausgang 2
3	IN3	Eingang 3	22	OUT3	Ausgang 3
4	IN4	Eingang 4	23	OUT4	Ausgang 4
5	IN5	Eingang 5	24	OUT5	Ausgang 5
6	IN6	Eingang 6	25	OUT6	Ausgang 6
7	IN7	Eingang 7	26	OUT7	Ausgang 7
8	IN8	Eingang 8	27	OUT8	Ausgang 8
9	IN9	Eingang 9	28	OUT9	Ausgang 9
10	IN10	Eingang 10	29	OUT10	Ausgang 10
11	IN11	Eingang 11	30	OUT11	Ausgang 11
12	IN12	Eingang 12	31	OUT12	Ausgang 12
13	IN13	Eingang 13	32	OUT13	Ausgang 13
14	IN14	Eingang 14	33	OUT14	Ausgang 14
15	IN15	Eingang 15	34	OUT15	Ausgang 15
16	IN16	Eingang 16	35	OUT16	Ausgang 16
17	GND	Bezugsmas se für Ein-/ Ausgänge	36	GND	Bezugsmas se für Ein-/ Ausgänge

Pin	Bezeichnung	Bemerkun g	Pin	Bezeichnung	
18	24V_In	24V Spannungsv ersorgung	37	24V_In	24V Spannungsv ersorgung (Eingang)
19	24V_In	(Lingarig)			

5.9 Analog-Eingänge ±10V (IR-MASTER & IR-AIN)

→ Anschlusstyp M16 7-pol., Buchse

Je Steckverbinder ist ein analoger Eingang $\pm 10V$ aufgelegt:

Pin	Bezeichnung	Bemerkung
1	Ain+	Positiver Eingang des differentiellen Analogeingangs.
2	Ain-	Negativer Eingang des differentiellen Analogeingangs.
3	VRef_+10V	+10 V Referenzspannung (Ausgang)
4	AN_GND	Bezugsmasse für Analogeingang (Ain+ / Ain-) und Referenzspannung VRef_+10V.
5	PWR_GND	Bezugsmasse für 24V Spannungsausgang
6	PWR_24V	24V Ausgang
7	-	

<u>Passende Gegenstecker M16</u>^{D_{42}} sind von verschiedenen Herstellern verfügbar, z.B. von Fa. Binder.

Achtung: Für M16IP sind passende Gegenstecker erforderlich; "normale" M16-Stecker passen hier je nach Hersteller nicht.

Trennung des Massebezugs

Wie die gesamte interne Spannungsversorgung der Irinos-Box, ist auch die Bezugsmasse für die Analog-Signale AN_GND galvanisch von der ILink-Spannungsversorgung (24V) getrennt. Folglich sind auch die Analog-Bezugsmassen von zwei Irinos-Boxen galvanisch voneinander getrennt. Alle Analog-Eingänge innerhalb einer Irinos-Box haben jedoch dieselbe Bezugsmasse.

Diese Trennung des Massebezugs verhindert die Entstehung von Masseschleifen, die in der Praxis häufig zu Problemen führen. Voraussetzung ist jedoch ein korrekter Anschluss der analogen Signalquellen an das Irinos-System.

Anschluss von analogen Signalquellen

Folgende Abbildung zeigt Beispiele für den Anschluss von analogen Signalquellen. Wie in der folgenden Abbildung gezeigt, sollte die analoge Bezugsmasse AN_GND einer Irinos-Box nicht direkt mit einer anderen Bezugsmasse verbunden werden. Verbinden Sie diese über einen Widerstand RExt, um eine hohe Messwertstabilität zu erhalten (Darstellungen A und C). Die Widerstandsgröße ist abhängig von der Applikation. In den meisten Fällen ist ein 1 kOhm – Widerstand angemessen.

Bei Single-ended Messungen muss der Eingang AIn- mit der Bezugsmasse GND der Signalquelle verbunden werden. Diese Verbindung sollte möglichst nah an der Signalquelle erfolgen, wenn die Bezugsmasse wie empfohlen über den Widerstand RExt getrennt wird (Darstellung B). Ohne den Widerstand sollte die Verbindung möglichst nah an der Irinos-Box erfolgen, z.B. im Steckverbinder (Darstellung D).

Ausgang VRef_+10V

Über den Ausgang VRef_+10V kann eine hochohmige Messschaltung mit einer Referenzspannung beaufschlagt werden. Dies ist beispielsweise für den Anschluss von Mess-Potentiometern erforderlich (siehe folgende Abbildung).

Beachten Sie die im Datenblatt angegebene maximale Strombelastbarkeit dieser Referenzspannung.

Anschluss-Beispiel "Potentiometer an Analog-Eingang"

24 Ausgang zur Versorgung von Analog-Sensoren

An jedem Analog-Eingang stehen 24V zur Versorgung von Analog-Sensoren, wie beispielsweise Temperatur-Messwandlern zur Verfügung. Diese 24V werden aus der <u>ILink-Spannungsversorgung</u>^{D30} entnommen. Die maximale Strombelastbarkeit entnehmen Sie dem Datenblatt.

Folgende Abbildung zeigt ein Anschluss-Beispiel für einen über das Irinos-System versorgten Analog-Sensor. Da das Bezugspotential des Analog-Eingangs (AN_GND) vom Bezugspotential der 24V-Versorgung getrennt ist, müssen diese über einen externen Widerstand miteinander verbunden werden.

Anschluss-Beispiel "Analog-Sensor an Analog-Eingang"

5.10 IO-Bus M9-Steckverbinder für IR-MASTER sowie I/O-Boxen

→ Anschlusstyp M9 4-pol., Buchse

Für einen zuverlässigen Betrieb des IO-Bus sollten vorkonfektionierte Kabel^{D40} verwendet werden. Diese sind in verschiedenen Ausführungen erhältlich.

Der IO-Bus muss an beiden Enden terminiert werden. In der Irinos-Box IR-MASTER ist die Terminierung integriert. Der Eingang "TERM" wird deshalb hier nicht verwendet. Bitte beachten Sie, dass aus Kompatibilitätsgründen der Eingang TERM mit der Bezugsmasse GND im Kabel gebrückt werden sollte. Die "TERM"-Leitung darf nicht zwischen beiden Kabel-Enden verbunden sein.

Steckerbelegung IO-Bus M9

Pin	Bezeichnung	Bemerkung
1	GND	Bezugsmasse
2	DATA_H	Datenleitung High- Pegel
3	DATA_L	Datenleitung Low- Pegel
4	TERM	Terminierungs- Erkennung (Eingang; bei IR-MASTER nicht verwendet)

5.11 IO-Bus DSUB-Steckverbinder für I/O-Boxen

→ Anschlusstyp DSUB Buchse oder Stecker

Für einen zuverlässigen Betrieb des IO-Bus sollten vorkonfektionierte Kabel^{D40} verwendet werden. Diese sind in verschiedenen Ausführungen erhältlich.

Pin	Bezeichnung	Bemerkung
1	-	
2	DATA_L	Datenleitung Low- Pegel
3	GND	Bezugsmasse
4	-	
5	-	
6	GND	Bezugsmasse
7	DATA_H	Datenleitung High- Pegel
8	-	
9	-	(An den IO-Boxen kann hier je nach Typ +24V DC aufgelegt sein. Verbinden Sie diesen Pin daher niemals.)

5.12 Eingänge für induktive Messtaster (IR-TFV)

→ Anschlusstyp M16 5-pol. 270°, Buchse

Je Steckverbinder kann ein induktiver Messtaster angeschlossen werden. Die Steckerbelegung entspricht dabei dem Standard des jeweiligen Messtasters.

Pin	Bezeichnung	Bemerkung
1	PHASE1	Bildet zusammen mit PHASE2 das Sinus- Erreger – Signal (Sinus-Oszillator)
2	GND	Bezugsmasse
3	MT_IN	Messeingang (Messsignal des Messtasters)
4	-	
5	PHASE2	Bildet zusammen mit PHASE1 das Sinus- Erreger – Signal (Sinus-Oszillator)

5.13 Anschluss KF27 für Anschlussbox für induktive Messtaster (IR-TFV)

→ Anschlusstyp DSUB 25-pol., Buchse

Bitte beachten Sie: die Messgenauigkeit und Messwertstabilität wird

maßgeblich durch die verwendete Verkabelung bestimmt. Für einen zuverlässigen Betrieb sollten nur die <u>vorkonfektionierten</u> <u>Anschlusskabel^{D39}</u> verwendet werden.

Steckerbelegung zur Anschlussbox für induktive Messtaster

Pin	Bezeichnung	Bemerkung
1	-	
2	LED	Anschluss einer externen LED. Wird

Pin	Bezeichnung	Bemerkung
		nicht verwendet.
3	+5V	Positive analoge Versorgungsspannun g
4	MT_IN2	Messeingang 2 (Messsignal des Messtasters 2)
5	MT_IN4	Messeingang 4 (Messsignal des Messtasters 4)
6	MT_IN6	Messeingang 6 (Messsignal des Messtasters 6)
7	MT_IN8	Messeingang 8 (Messsignal des Messtasters 8)
8	GND	Bezugsmasse
9	PHASE2	Bildet zusammen mit PHASE1 das Sinus-
10	PHASE2	Erreger – Signal (Sinus-Oszillator)
11	PHASE1	Bildet zusammen mit PHASE2 das Sinus-
12	PHASE1	Erreger – Signal (Sinus-Oszillator)
13	-	
14		
15	-5V	

Pin	Bezeichnung	Bemerkung
16	MT_IN1	Messeingang 1 (Messsignal des Messtasters 1)
17	MT_IN3	Messeingang 3 (Messsignal des Messtasters 3)
18	MT_IN5	Messeingang 5 (Messsignal des Messtasters 5)
19	MT_IN7	Messeingang 7 (Messsignal des Messtasters 7)
20	GND	Bozugemaceo
21	GND	bezugsmasse
22	PHASE2	Bildet zusammen mit PHASE1 das Sinus-
23	PHASE2	Erreger – Signal (Sinus-Oszillator)
24	PHASE1	Bildet zusammen mit PHASE2 das Sinus-
25	PHASE1	Erreger – Signal (Sinus-Oszillator)

5.14 Inkrementalgeber 1Vss oder TTL / RS422 (IR-INC)

→ Anschlusstyp DSUB 15-pol., Buchse

Zur Erreichung der Schutzart IP65 sind <u>geeignete DSUB-Gehäuse</u>^{D42} des Herstellers FCT / Molex für den Anschlussstecker erforderlich (Typ FWA2GA).

Für die <u>ILink-Schnittstelle</u>^{D80} wird derselbe Steckverbinder wie für die Inkrementalgeber-Eingänge verwendet.

Die Belegung des ILink-Steckverbinders ist so gewählt, dass Inkrementalgeber vom Typ 1Vss / TTL mit Standard-Belegung der Fa. Heidenhain nicht beschädigt werden, wenn sie versehentlich in die Buchse der ILink-Schnittstelle gesteckt werden. Bei Spezial-Gebern mit hiervon abweichender Belegung kann dies anders sein.

Stecken Sie Inkrementalgeber deshalb immer nur in die dafür vorgesehenen Eingangsbuchsen.

Steckerbelegung Inkrementalgeber-Eingang 1Vss bzw. TTL / RS422

Pin	Bezeichnung1 Vss	Bezeichnung TTL	Bemerkung
1	SIN+	A+	1Vss: Sinus- Spur positive Signalleitung TTL / RS422: A-Spur positive Signalleitung

Pin	Bezeichnung1 Vss	Bezeichnung TTL	Bemerkung
2	GND	GND	Bezugsmasse
3	COS+	В+	1Vss: Cosinus- Spur positive Signalleitung TTL / RS422: B-Spur positive Signalleitung
4	+5V	+5V	+5V Spannungsvers orgung für Inkrementalgeb er
5	-	_	Nicht belegt. Die ILink- Schnittstelle führt auf diesem Pin +24V.
6	-	_	Nicht belegt. Die ILink- Schnittstelle führt auf diesem Pin +24V.
7	REF-	REF-	Referenzmarke negative Signalleistung
8	-	-	
9	SIN-	A-	1Vss: Sinus- Spur negative Signalleitung TTL / RS422: A-Spur negative

Pin	Bezeichnung1 Vss	Bezeichnung TTL	Bemerkung
			Signalleitung
10	-	-	
11	COS-	В-	1Vss: Cosinus- Spur negative Signalleitung TTL / RS422: B-Spur negative Signalleitung
12	-	-	
13	-	-	Nicht belegt. Die ILink- Schnittstelle verwendet diesen Pin als Bezugsmasse.
14	REF+	REF+	Referenzmarke positive Signalleitung
15	-	-	Nicht belegt. Die ILink- Schnittstelle verwendet diesen Pin als Bezugsmasse.
Montage

6 Montage

→ Lesen Sie vor der Montage unbedingt die <u>Sicherheitshinweise</u>^{D18}.

6.1 Prüfen der Lieferung

Vorgehensweise:

- Wenn Sie die Lieferung entgegen nehmen, pr
 üfen Sie die Verpackung auf sichtbare Transportsch
 äden.
- Wenn Transportschäden vorhanden sind, reklamieren Sie die Lieferung beim zuständigen Spediteur. Lassen Sie unverzüglich die Transportschäden durch den Spediteur bestätigen.
- o Packen Sie die Irinos-Komponenten am Bestimmungsort aus.
- Bewahren Sie die die Originalverpackung f
 ür einen erneuten Transport auf.
- Prüfen Sie den Verpackungsinhalt und Ihre extra bestellten Zubehörteile auf Vollständigkeit und Beschädigungen. Wenn der Verpackungsinhalt unvollständig oder beschädigt ist oder nicht Ihrer Bestellung entspricht, informieren Sie unverzüglich den Lieferanten.
- Bewahren Sie auch die mitgelieferten Unterlagen auf. Sie gehören zum Irinos-System.

Bei Irinos-Boxen ist Folgendes im Lieferumfang enthalten:

- \circ Irinos-Box
- o Begleitblatt
- Warnhinweis DHCP-Server (nur bei IR-MASTER und "integrierter Master")
- 2 Abdeckkappen f
 ür die ILink-Steckverbinder (nur bei IR-MASTER und "integrierter Master")

Bei Kabeln ist das jeweilige Kabel im Lieferumfang enthalten.

Folgende Tabelle zeigt den Lieferumfang des Zubehörs für das Irinos-System:

Artikel	Lieferumfang
IR-MHRM-1 Hutschienen-Adapter	 Hutschienen-Adapter 2 Befestigungsschrauben Inbus M4 Senkkopf zur Befestigung des Hutschienen-Adapters an einer Irinos-Box
IR-MFFM-1 Befestigungs-Flansch	 Befestigungs-Flansch 2 Befestigungsschrauben Inbus M4 Senkkopf zur Befestigung des Befestigungs-Flanschs an einer Irinos-Box
IR-MITEM-40 Befestigungs-Adapter für Item- Profil	 Befestigungs-Adapter 2 Befestigungsschrauben Inbus M4 Linsenkopf zur Befestigung des Befestigungs-Adapters an einer Irinos-Box
IR-MWIP-40 Montageständer für Item-Profil	 2 Montagewinkel
IR-MIPL-8-ABB179 Beschriftungsträger	 Beschriftungsträger 3 Befestigungsschrauben Inbus M3 Linsenkopf zur Befestigung des Beschriftungsträgers an einer Irinos-Box

6.2 Auswahl des Standorts

Die Irinos-Boxen sind als Feldgeräte sowohl für den Einsatz in geschlossenen Gehäusen, z.B. im Schaltschrank, als auch für eine

Platzierung an oder in der Nähe der Messvorrichtung geeignet.

Insbesonders bei größeren Anlagen ist die Platzierung in der Nähe der Messvorrichtung zu bevorzugen. Sie bietet zwei wichtige Vorteile:

 Die Leitungen der Messtaster, Inkrementalgeber und sonstiger Sensoren können sehr kurz ausgeführt werden. Die Qualität der Analogsignale am Messeingang ist dadurch besonders gut. Zudem vereinfacht dies die Leitungsverlegung fern von möglichen Störquellen.

o Der Tausch eines Messtasters, z.B. bei einem Defekt, ist einfacher.

Berücksichtigen Sie für einen störungsfreien Betrieb des Irinos-Systems:

Platzieren Sie die Irinos-Boxen immer fern von möglichen Störquellen, wie z.B. Umrichtern oder Motorleitungen.

Ein wichtiger Faktor bei der Auswahl des geeigneten Standorts ist die IP-Schutzart. Zwar sind die meisten Irinos-Komponenten auch in einer Variante mit besonders hohem IP-Schutz verfügbar. Damit dieser eingehalten werden kann, sind jedoch geeignete Steckverbinder der angeschlossen Leitungen erforderlich. Die meisten der am Markt üblichen Messtaster und Inkrementalgeber haben jedoch Steckverbinder mit einer niedrigen Schutzart (z.B. IP00 oder IP40). Zur Erreichung der Schutzart müssten diese Steckverbinder getauscht werden.

Es ist deshalb empfehlenswert die Irinos-Boxen so zu platzieren, dass ein geringer IP-Schutz ausreichend oder gar keine IP-Schutz erforderlich ist.

Die Irinos-Boxen haben eine geringe Eigen-Wärmeentwicklung und sind für Industrie-übliche Umgebungstemperaturen ausgelegt. Zudem ist die integrierte Messelektronik besonders Temperaturstabil.

Wählen Sie trotzdem einen Standort mit moderaten Umgebungstemperaturen. Der zulässige Temperaturbereich ist im jeweiligen Datenblatt angegeben. Vermeiden Sie insbesonders die Platzierung in der Nähe von Wärmequellen wie z.B. Kühlkörper anderer Geräte oder Heizelemente.

6.3 Befestigung der Irinos-Boxen

6.3.1 Direkte Befestigung über rückseitige Gewindehülsen

Jede Irinos-Box verfügt über <u>2 rückseitige Gewindehülsen</u>^{D^{22}} M4. Damit ist eine direkte Befestigung möglich.

Beachten Sie bei der Befestigung folgende Limitierungen:

- Die maximale Einschraubtiefe beträgt 7 mm. Wählen Sie Schrauben mit passender Länge.
- o Das maximale Anzugsmoment beträgt 2 Nm.
- Üben Sie keine Querbelastung auf die Gewindehülsen aus. Sie können sonst abfallen.

Befestigung über rückseitige Gewindehülse

6.3.2 Befestigung an einer Hutschiene

→ Zur Befestigung an einer Hutschiene ist der <u>Adapter IR-</u> <u>MHRM-1</u>^{D37} erforderlich.

Der Hutschienen-Adapter IR-MHRM-1 wird bereits vormontiert ausgeliefert (siehe Abbildung). Er wird über 2 mitgelieferte Inbus-Schrauben an der Rückseite der Irinos-Box befestigt.

Die Irinos-Box kann dann an einer Hutschiene TS35 befestigt werden. Dazu wird die Irinos-Box von oben in die Hutschiene eingehängt. Anschließend von oben drücken, bis die Befestigung an der Unterseite der Hutschiene einrastet.

Hutschienen-Adapter IR-MHRM-1

Befestigung des Hutschienen-Adapters IR-MHRM-1

6.3.3 Front-Befestigung über Befestigungs-Flansch

→ Zur Front-Befestigung ist der <u>Befestigungs-Flansch IR-</u> <u>MFFM-1</u>^{D37} erforderlich.

Der Befestigungs-Flansch wird über 2 mitgelieferte Inbus-Schrauben an der Rückseite der Irinos-Box befestigt (siehe Abbildung). Anschließend kann die Irinos-Box von vorne über die drei "Schlüssel-Löcher" montiert werden, beispielsweise an einer Schaltschrank-Wand.

Befestigung des Befestigungs-Flanschs IR-MFFM-1

6.3.4 Befestigung an 40mm Item-Profil

→ Zur Befestigung am Item-Profil ist der <u>Befestigungs-Winkel</u> <u>IR-MITEM-40</u>^{D37} erforderlich.

Der Befestigungs-Winkel wird über 2 mitgelieferte Inbus-Schrauben an der Rückseite der Irinos-Box befestigt:

Montage der Irinos-Box am Befestigungswinkel

Anschließend kann die Irinos-Box von vorne über die zwei "Schlüssel-Löcher" an einem Item-Profil montiert werden. Hierzu sind passende Nutensteine sowie Schrauben für das Item-Profil erforderlich. Diese sind nicht im Lieferumfang des Befestigungswinkels enthalten.

Montage des Befestigungswinkels am Item-Profil

6.3.5 Montageständer für 40mm Item-Profil

Zum Aufbau des Montageständers sind

- der <u>Montage-Ständer IR-MWIP-40^{D37}</u> sowie
- ein 40mm Item-Profil

erforderlich. Das Item-Profil ist nicht im Lieferumfang des Montageständers enthalten. Seine Länge bestimmt, für wieviele Irinos-Boxen der Montageständer geeignet ist.

Zur Bearbeitung des Item-Profils ist ein Gewindeschneider M8 erforderlich.

Vorgehensweise

- 1. Schneiden Sie in die Mittelbohrung der beiden Enden des Item-Profils mit einem Gewindeschneider M8 jeweils ein Gewinde ein.
- Befestigen Sie die beiden Montagewinkel des Montageständers wie in folgender Abbildung dargestellt seitlich am Item-Profil. Beachten Sie dabei, dass es einen linken und einen rechten Montagewinkel gibt.
- 3. Optional kann auf der Oberseite des Montageständers ein Schutzblech montiert werden, um die Steckverbinder vor herabtropfenden Flüssigkeiten zu schützen. Dieses ist nicht im Lieferumfang enthalten.

Seitenansicht des Montageständers

Gesamtansicht des fertigen Montageständers

Folgende Abbildungen zeigen einen Beispiel-Aufbau des

Montageständers für 4 Irinos-Boxen.

Vorderansicht des Montageständers

Rückansicht des Montageständers

Leitungen anschließen 6.4

Eine ordnungsgemäße Verkabelung ist entscheidend für den störungsfreien Betrieb des Irinos-Systems. Beachten Sie deshalb folgende Regeln:

• Verlegen Sie alle Leitungen räumlich getrennt von möglichen Störguellen, wie beispielsweise Umrichtern oder Motorleitungen.

o Vermeiden Sie unnötig lange Leitungen. Vermeiden Sie insbesonders "Kabelschleifen".

- Alle Messleitungen sowie die ILink-Kabel müssen ausreichend geschirmt sein.
- Verwenden Sie die Verriegelungsmechanismen der Steckverbinder.
- Vermeiden Sie mechanische Belastungen, die auf die Leitungen einwirken können.

Achten Sie beim Einsatz in Schleppketten auf hierfür geeignete Leitungen.

Versehen Sie alle nicht verwendeten Steckverbinder mit einer <u>Schutzkappe^{D42}</u>.

Führen Sie den Anschluss der Leitungen im ausgeschalteten Zustand durch.

Die Anschlussreihenfolge ist unerheblich. Aufgrund der Zugänglichkeit wird aber folgende Reihenfolge empfohlen:

- a) Ethernet-Verbindung herstellen.
- b) ILink-Verkabelung herstellen.
- c) Messtaster und digitale Ein- / Ausgänge anschließen.

6.4.1 ILink-Verkabelung

Eine Veränderung der ILink-Verkabelung darf nur im ausgeschalteten Zustand durchgeführt werden. Bereits eine sehr kurze Unterbrechung der ILink-Verkabelung führt zu einem Kommunikationsfehler. Das System muss dann neu gestartet werden.

Grundlagen

- \circ Die ILink-Schnittstelle ist ein Bussystem in Linientopologie. Jede Irinos-Box hat 2 <u>ILink-Steckverbinder</u>^{D™}.
- Es werden immer zwei Irinos-Boxen miteinander über ein <u>ILink-Kabel^{D38}</u> verbunden. Bei der ersten und letzten Irinos-Box bleibt jeweils ein ILink-Steckverbinder unbenutzt. Verwenden Sie die mit der Master-Box mitgelieferten Abdeckkappen als Schutz für diese beiden Steckverbinder.
- Eine manuelle Terminierung ist nicht erforderlich. Die notwendige Terminierung nimmt das Irinos-System beim Einschalten

automatisch vor.

Die erste und letzte Box zeigen die Terminierung durch das Leuchten der Terminierungs-LED (blau) an. Diese befindet sich zwischen den beiden ILink-Steckverbindern. Bei allen anderen Boxen muss die Terminierungs-LED aus sein.

○ Es spielt grundsätzlich keine Rolle, in welchen der beide <u>ILink-Steckverbinder^{D®}</u> ein <u>ILink-Kabel^{D®}</u> gesteckt wird. Diese sind technisch identisch.

Einzige Ausnahme ist die Master-Box, wenn diese nicht als erste oder letzte Box verwendet wird. Hier entscheidet der Anschluss über die Reihenfolge der <u>Adressierung</u>¹¹⁰⁰ (= Nummerierung) der Slave-Boxen. Die Nummerierung beginnt bei den Slave-Boxen, die an den oberen ILink-Steckverbinder angeschlossen sind. Es wird daher empfohlen die Master-Box immer als erste oder letzte Irinos-Box zu verwenden. Somit muss bei einem Austausch der Master-Box die Anschluss-Reihenfolge nicht berücksichtigt werden. Ausgenommen hiervon ist das <u>Netzteil IR-PU</u>^{D70}, da dieses nicht adressiert wird.

- Die maximal zulässige Gesamt-Länge der ILink-Verkabelung beträgt 20m.
- Ist die <u>Netzteil-Box IR-PU50^{D70}</u> die erste oder letzte Box, dann darf die Leitungslänge zur nächsten Box maximal 0,3m betragen.
- Beachten Sie, dass je Irinos-System nur eine Irinos-Box mit Ethernet-Schnittstelle zulässig ist (d.h. nur eine Master-Box IR-<u>MASTER^{D49}</u> oder <u>"integrierter Master</u>^{D46}). Mit mehreren Master-Boxen kann die ILink-Kommunikation nicht funktionieren.
- Ein Irinos-System darf aus <u>maximal 32 Irinos-Boxen^{D27}</u> bestehen (inklusive Master-Box).

Vorgehensweise

Verbinden Sie benachbarte Irinos-Boxen jeweils über ein <u>ILink-</u> <u>Verbindungskabel</u>^{D₃₈}. Achten Sie dabei besonders darauf, dass die DSUB-Steckverbinder ausreichend mit beiden Schraub-Bolzen verriegelt sind.

Folgende Abbildung zeigt eine beispielhafte ILink-Verkabelung:

Beispiel ILink-Verkabelung

Versehen Sie die beiden nicht benötigten DSUB-Buchsen mit den Schutzkappen, die der Master-Box beigelegt sind.

6.4.2 IO-Bus - Verkabelung

→ Die IO-Bus – Verkabelung wird nur benötigt, wenn an die Master-Box IR-MASTER <u>I/O-Boxen^{D72}</u> über den <u>IO-Bus^{D99}</u> angeschlossen werden. Für die Irinos-Boxen vom Typ <u>IR-DIO^{D61}</u> wird keine IO-Bus – Verkabelung benötigt, da diese über <u>ILink^{D80}</u> angeschlossen werden.

Grundlagen

- o Der IO-Bus ist ein Bussystem in Linientopologie.
- Die Irinos-Box <u>IR-MASTER</u>^{D₄9} bildet den Anfang des Bussystems. Es können maximal 4 I/O-Boxen mit jeweils maximal 16 digitalen Ein-/Ausgängen angeschlossen werden.
- Die letzte I/O-Box muss terminiert werden.
 Bei der <u>Tischversion</u>^{D⁷²} erfolgt die Terminierung automatisch und wird durch die Terminierungs-LED signalisiert.
 Bei der <u>Hutschienen-Version</u>^{D⁷⁴} muss die Terminierung manuell über einen DIP-Schalter aktiviert werden.
- Jede I/O-Box muss manuell adressiert werden. Dazu muss die Adresse der jeweiligen I/O-Box via Kodierschalter bzw. DIP-Schalter eingestellt werden. Zulässig sind die Adressen 2, 4, 6 und 8. Jede dieser Adressen darf nur einmal vergeben werden.
- Die maximal zulässige Gesamt-Länge der IO-Bus Verkabelung beträgt 20m.

Vorgehensweise

◦ Stellen Sie die Adressen der anzuschließenden I/O-Boxen ein (->

<u>Tischversion</u>^{D_{72}} / <u>-> Hutschienen-Version</u>^{D_{74}}).

- Wenn I/O-Boxen der <u>Hutschienen-Version</u>^{D74} verwendet werden: Aktivieren Sie die Terminierung bei der I/O-Box, die am Ende des IO-Bus angeschlossen wird. Deaktivieren Sie die Terminierung bei allen anderen I/O-Boxen.
- Verbinden Sie benachbarte I/O-Boxen über die IO-Bus Verbindungskabel.

6.4.3 Ethernet-Verbindung herstellen

Bei der <u>Ethernet-Schnittstelle</u>^{D®2} des Irinos-Systems handelt es sich um eine Standard Ethernet-Schnittstelle, wie sie beispielsweise auch zur IT-Vernetzung verwendet wird. Das Irinos-System kann daher grundsätzlich auch mit Standard-Ethernet-Switches verwendet werden.

Die Datenkommunikation zwischen dem Irinos-System und dem PC ist fehlertolerant aufgebaut, so dass bei einem Paketverlust automatisch eine Übertragungswiederholung durchgeführt wird. Diese Wiederholung führt jedoch immer zu einer nennenswerten Verzögerung bei der Verfügbarkeit der Messwerte. Eine Übertragungswiederholung sollte deshalb in der Praxis eine Ausnahme sein.

Um die Anzahl der Übertragungswiederholungen zu minimieren, wird deshalb eine *direkte – Verbindung zwischen dem Irinos-System und dem PC dringend empfohlen*. Verbinden Sie dazu die Ethernet-Schnittstelle des Irinos-Systems mit einer freien Ethernet-Schnittstelle des PCs. Erfahrungsgemäß treten Übertragungswiederholungen dadurch praktisch nie auf.

Ein Betrieb des Irinos-Systems über Router, VPN-Verbindungen, Funk-Verbindungen (WLAN) oder Ähnlichem, ist nicht vorgesehen.

Die Ethernet-Schnittstelle des Irinos-Systems hat eine automatische "Cross-Over-Erkennung". Es spielt somit keine Rolle, ob ein 1:1 <u>Ethernet-Kabel</u>^{D₃₉} oder ein gekreuztes Ethernet-Kabel verwendet wird.

Im Auslieferungszustand ist der DHCP-Server des Irinos-Systems aktiviert. Dies ist die ideale Einstellung für eine direkte Verbindung zum PC.

Bevor die Irinos-Box in einem IT-Netzwerk betrieben wird, muss der DHCP-Server über eine direkte Verbindung deaktiviert werden. Dies geschieht über das Irinos-Tool. Nähere Informationen dazu entnehmen Sie der Dokumentation des Irinos-Tools.

6.4.4 Induktive Messtaster anschließen

Schließen Sie die Messtaster an die dafür vorgesehenen Messeingänge D^{101} an. Beachten Sie dabei:

Induktive Messtaster dürfen nur an die dafür geeignete Irinos-Box $\underline{IR-TFV}^{D_{52}}$ angeschlossen werden.

Schließen Sie Messtaster vom Typ "Tesa Halbbrücke" nur an die Irinos-Box IR-TFV-8-**TESA**-... an.

Schließen Sie Messtaster vom Typ "Knäbel IET" nur an die Irinos-Box IR-TFV-8-**IET**-... an.

Den Typ können Sie auch der <u>Box-Beschriftung</u>^{D52} entnehmen.

Versehen Sie alle nicht benutzen Eingangsbuchsen mit einer <u>Schutzkappe^{D42}</u>. Diese sind separat erhältlich.

6.4.5 Inkrementalgeber anschließen

Schließen Sie die Inkrementalgeber (1Vss oder TTL/RS422) an die dafür vorgesehenen <u>Eingangsbuchsen</u>^{D^{212}} an. Beachten sie dabei:

Für die <u>ILink-Schnittstelle</u>^{D80} wird derselbe Steckverbinder wie für die Inkrementalgeber-Eingänge verwendet.

Die Belegung des ILink-Steckverbinders ist so gewählt, dass Inkrementalgeber vom Typ 1Vss / TTL mit Standard-Belegung der Fa. Heidenhain nicht beschädigt werden, wenn sie versehentlich in die Buchse der ILink-Schnittstelle gesteckt werden. Bei Spezial-Gebern mit hiervon abweichender Belegung kann dies anders sein.

Stecken Sie Inkrementalgeber deshalb immer nur in die dafür vorgesehenen Eingangsbuchsen.

Die Messeingänge sind für die Inkrementalgeber-Typen 1Vss oder TTL/RS422 vorkonfiguriert. Wird der jeweils andere Typ angeschlossen, so funktioniert die Messwerterfassung nicht korrekt. Eine Beschädigung des Messeingangs oder Inkrementalgebers ist jedoch nicht möglich.

Versehen Sie alle nicht benutzen Eingangsbuchsen mit einer <u>Schutzkappe^{D42}</u>. Diese sind separat erhältlich.

6.4.6 Analogsensoren anschließen

Schließen Sie die Analogsensoren an die dafür vorgesehenen <u>Eingangsbuchsen</u>^{D[™]} an.

Versehen Sie alle nicht benutzen Eingangsbuchsen mit einer <u>Schutzkappe^{D42}</u>. Diese sind separat erhältlich.

6.4.7 Digitale Ein-/Ausgänge anschließen

Schließen Sie die digitalen Ein-/Ausgänge an die dafür vorgesehenen Eingangsbuchsen bzw. Klemmen an.

Versehen Sie alle nicht benutzen Eingangsbuchsen mit einer <u>Schutzkappe^{D42}</u>. Diese sind separat erhältlich.

Inbetriebnahme und Kennenlernen

Inbetriebnahme und Kennenlernen

7.1 Erste Schritte

7

Das Irinos-System ist so konzipiert, dass in den meisten Fällen keine Konfiguration des Systems oder der Komponenten erforderlich ist. Ausnahmen hiervon sind:

- Konfiguration der Netzwerkeinstellungen^{D130}, sofern keine Default-Werte verwendet werden sollen.
- Konfiguration der Inkrementalgeber-Eingänge, sofern ein anderer als der vorparametrierte Inkrementalgeber-Typ verwendet werden soll.

Sobald die <u>Montage und Verkabelung</u>^D¹⁰ durchgeführt wurde, kann das Irinos-System sofort eingeschaltet werden, indem das Netzteil mit Spannung versorgt wird.

7.2 Box-Adressierung

Alle Irinos-Boxen werden nach dem Einschalten automatisch adressiert. Die Master-Box hat immer die Adresse 0. Die Slave-Boxen werden fortlaufend in der Reihenfolge nummeriert, wie sie angeschlossen sind. Die Box-Reihenfolge ist auch ausschlaggebend für die initiale Nummerierung der Messeingänge bzw. der digitalen Ein-/Ausgänge.

Folgende Abbildung zeigt einige Beispiele für die Box-Adressierung:

Beispiele für die Box-Adressierung

Platzierung der Master-Box

Eine Besonderheit ergibt sich, wenn die Master-Box nicht die erste oder letzte Irinos-Box ist, d.h. an beide <u>ILink-Steckverbinder</u>^{D®0} der Master-Box sind jeweils Slave-Boxen angeschlossen. In diesem Fall beginnt die Nummerierung bei den Slave-Boxen, die am oberen ILink-Steckverbinder der Master-Box angeschlossen sind. Sie wird anschließend bei den Slave-Boxen fortgesetzt, die am unteren ILink-Steckverbinder der Master-Box angeschlossen sind. Es wird empfohlen, die Master-Box als erste oder letzte Irinos-Box einzusetzen. Ausgenommen hiervon ist das <u>Netzteil IR-PU</u>^{D70}, da dieses nicht adressiert wird.

Adressierungs-Vorgang

Die Dauer des Adressierungs-Vorgangs ist abhängig von der Anzahl der angeschlossenen Boxen. Typischerweise dauert er nur wenige Sekunden. Mit vielen Irinos-Boxen kann er bis zu 15s dauern.

Bevor eine Box eine Adresse zugewiesen bekommen hat, drehen sich die Elemente der 7-Segment-Anzeige im Uhrzeigersinn:

888888

Nach erfolgter Adressierung wird die Box-Nummer auf der <u>7-</u> <u>Segment-Anzeige</u>^{D48} angezeigt. Ausnahme ist die erste Box mit 7-Segment-Anzeige: bei dieser wird zunächst die IP-Konfiguration angezeigt und erst anschließend die Box-Nummer.

Terminierung

Im Rahmen der Box-Adressierung werden auch die erste und die letzte Box ermittelt. Bei beiden wird automatisch die Terminierung aktiviert. Dies wird durch eine blau leuchtende LED signalisiert, die sich zwischen den ILink-Steckverbindern befindet. Bei allen anderen Irinos-Boxen darf diese LED nicht leuchten.

Test

Folgende Prüfungen sollten nach dem erstmaligen Einschalten durchgeführt werden:

- Prüfen Sie, ob alle Slave-Boxen eine Adresse zugewiesen bekommen haben.
- Prüfen Sie, ob die Terminierungs-LED an der ersten und an der letzten Irinos-Box leuchtet. Bei allen anderen Irinos-Boxen muss sie aus sein.

7.3 Netzwerk-Konfiguration

Die Master-Box des Irinos-Systems hat einen integrierten DHCP-Server. Dieser ist im Auslieferungszustand aktiviert. Die **IP-Adresse des Irinos-Systems ist 192.168.3.99**, die Subnetz-Maske 255.255.255.0. Sofern die Ethernet-Schnittstelle des PCs als "DHCP-Client" konfiguriert ist, bekommt er beim Verbindungsaufbau automatische eine IP-Adresse aus dem Adressbereich 192.168.3.100 bis 192.168.3.254 zugewiesen. Es ist dann keine Netzwerk-Konfiguration erforderlich.

Im Auslieferungszustand ist der DHCP-Server des Irinos-Systems aktiviert. Dies ist die ideale Einstellung für eine direkte Verbindung zum PC.

Bevor die Irinos-Box in einem IT-Netzwerk betrieben wird,

muss der DHCP-Server über eine direkte Verbindung deaktiviert werden. Dies geschieht über das Irinos-Tool. Nähere Informationen dazu entnehmen Sie der Dokumentation des Irinos-Tools.

Falls die Nutzung der DHCP-Funktion nicht gewünscht ist, gibt es 2 Möglichkeiten:

- a) Der DHCP-Server an der Master-Box bleibt aktiviert. Der PC erhält aber eine feste IP-Konfiguration. Verwenden Sie hierzu beispielsweise folgende Netzwerkeinstellungen am PC: IP-Adresse: 192.168.3.98 Subnetzmaske: 255.255.255.0
- b) Der DHCP-Server an der Master-Box wird über das <u>Irinos-Tool</u>¹ deaktiviert. Die IP-Adresse der Irinos-Box kann frei vergeben werden. Der PC erhält eine feste IP-Konfiguration. Die genaue Vorgehensweise hierzu entnehmen Sie der Dokumentation des Irinos-Tools.

Ob die Netzwerkverbindung funktioniert, kann am Einfachsten über den <u>Web-Server</u>^{D¹⁰⁰} des Irinos-Systems getestet werden. Öffnen Sie dazu einen Webbrowser und geben Sie in die Adresszeile die IP-Adresse des Irinos-Systems ein. Bei einer funktionierenden Netzwerkverbindung erscheint nun die Webseite mit der Messwertanzeige. Unter <u>"Erste Hilfe: Netzwerkverbindung"</u>^{D²⁰⁰} ist die typische Vorgehensweise bei Verbindungsproblemen beschrieben.

7.4 Irinos-Tool

Das Irinos-Tool ist ein Konfigurations- und Testwerkzeug für das Irinos-System. Zu seinem Funktionsumfang gehören:

- Ändern der Netzwerk-Konfiguration des Irinos-Systems.
- Erzeugen der Konfigurations-Datei Msc.cfg f
 ür die MscDll[□]^{1™}.
- o Übersicht der verfügbaren Messkanäle.
- \circ Konfiguration der <u>Inkrementalgeber-Eingänge^{D₅₈}</u> (1Vss oder TTL/ RS422).
- Diagnose der Inkrementalgeber-Signale (1Vss).
- $_{\odot}$ Anzeige der statischen Messwerte.

• Übersicht der an ein Irinos-System angeschlossenen Irinos-Boxen.

o Durchführen von Firmware-Updates.

 \circ Auslesen und Speichern des <u>Diagnose-Speicher</u>^{D²²²} – Inhaltes.

Weitere Informationen entnehmen Sie der separat verfügbaren Dokumentation des Irinos-Tools.

Es wird empfohlen das Irinos-Tool auf dem an das Irinos-System angeschlossenen Messrechner bereit zu halten, so dass es im Diagnose-Fall schnell als Hilfsmittel herangezogen werden kann. Für das Irinos-Tool fallen keine Lizenzgebühren an, solange es ausschließlich in Verbindung mit dem Irinos-System verwendet wird.

Menü Grundkonfiguration IP Konfiguration Direkte IP Eingabe Kanalzuordnung Inventariste Statische Messung Dynamische Messung Diagnose-Einträge Detailierte Informationen zu jeder Box sind per Doppekick auf die Tabelenzele abrufbar. Für wetere Funktionen Box selektieren und die Schaltflächen unten verwenden. Irinos Box Log. Box Typ Bezeichnung MAC-Adresse Firmware-Version Ereignis 0 IR-INC-4-SELLVSS-D15F- LBox 0 A0-8B-3E-E0-00-0A SW V0.4.0.3						
IP Konfiguration Direkte IP Eingabe Kanalzuordnung Inventariste Statische Messung Dynamische Messung Diagnose-Einträge Detailierte Informationen zu jeder Box sind per Doppekick auf die Tabelenzele abrufbar. Für weitere Funktionen Box selektieren und die Schaltflächen unten verwenden. Irinos Box Log. Box Typ Bezeichnung MAC-Adresse Firmware-Version Ereignis 0 IR-INC-4-SELIVSS-D15F: LBox 0 A0-8B-3E-E0-00-0A SW V0.4.0.3						
Irinos Box Log. Box Typ Bezeichnung MAC-Adresse Firmware-Version Ereignis 0 IR-INC-4-SEL1VSS-D15F: LBox 0 A0-BB-3E-E0-00-0A SW V0.4.0.3						
0 IR-INC-4-SEL1VSS-D15F- LBox 0 A0-BB-3E-E0-00-0A SW V0.4.0.3						
1 IR-TFV-8-TESA-M16-IL LBox 1 A0-BB-3E-E0-01-17 SW V0.4.0.1						
۲						
Aktualsieren Absolutzeit setzen Ereigniskonfiguration anzeigen Firmware Update						
Verbunden mt 192.168.3.99 [26.01.2016 12:30:23] Datel gespeichert: S:\B37Win\IToo\\source_XE8\MSC.cfg						

Irinos-Tool

7.5 Web-Server

Das Irinos-System verfügt über einen integrierten Web-Server, der als Inbetriebnahme- und Diagnose-Hilfe dient. Der Zugriff auf den Web-Server erfolgt von einem Webbrowser wie beispielsweise InternetExplorer oder Firefox. Geben Sie dazu die IP-Adresse des Irinos-Systems in die Adresszeile des Webbrowsers ein (Auslieferungszustand 192.168.3.99).

Die Darstellung der Webseiten wurde mit den Webbrowsern InternetExplorer 11, Firefox und Chrome erfolgreich getestet. Aufgrund der unterschiedlichen Interpretation von Standards, kann eine einwandfreie Funktion nicht mit allen Browsern und Browser-Versionen garantiert werden.

Es stehen 4 verschiedene Webseiten zur Verfügung:

Measurement (aktuelle Messwerte)

Auf der Webseite "Measurement" werden die aktuellen Messwerte der Messeingänge sowie der aktuelle Zustand der digitalen Eingänge live angezeigt (Updaterate ca. 4 Hz).

Damit können:

- Die Messtaster bereits zu einem Zeitpunkt eingestellt und getestet werden, an dem noch keine Messrechner-Software zur Verfügung steht.
- Die vom Irinos-System gelieferten Messwerte mit denjenigen verglichen werden, welche die Messrechner-Software anzeigt.

← → @ http://192.168.3.99	/ り - C 🦉 Irinos V2/	0 ×	în ★ ‡		
	Measurement Va	Measurement Values			
	Channel list	Probe	Digits		
Irinos	Box 0 CH 1		-9		
Measurement	Box 0 CH 2		0		
Network	Box 0 CH 3		-7		
Inventory Diagnostic	Box 0 CH 4		-2		
	Box 1 CH 1		0		
	Box 1 CH 2		0		
	Box 1 CH 3		-1		
	Box 1 CH 4		0		
	Box 1 CH 5		0		
	Box 1 CH 6		0		
	Box 1 CH 7		0		
	Box 1 CH 8		0		
	Digital Input				
	Digital input list	Input Status	Bits		
	Box 0		18		

Network

Auf der Webseite "Network" werden Konfigurations- und Statusinformationen zur Netzwerkverbindung mit dem PC angezeigt:

	99/WebNetworkS 🔎 🔻 🖒 🏉 Irinos V2	.0 ×	<u>∩</u> ★ ‡
	Network		
	IP Address	192.168.3.99	
Irinos	MAC Address	A0-BB-3E-E0-00-0A	
Measurement TX Network RX Inventory Diagnostic Eth	TX packets	83171	
	RX packets	103825	
	Eth errors	0	

Inventory

Auf der Webseite "Inventory" wird eine Übersicht aller im Irinos-System vorhanden Irinos-Boxen mit den wichtigsten Box-Informationen angezeigt:

← ○ ◎ http://192168.399/WebInventory クマ 0 ◎ Irinos V2.0 ×					
	Box 0		^		
	Serial	PRT_INC-			
Irinos	Device	IR-INC-4-SEL1VSS-D15F-ETHIL			
Measurement	MAC Address	A0-BB-3E-E0-00-0A			
Network Inventory	Order Number	828-5013			
Diagnostic	Firmware Version	V0.4.0.1			
	Hardware Version	1.0			
	Hardware Revision	1			
	Sample Period	50 µs			
	Channels	4 channels (32-bit)			
	Digital Inputs	2			
	Digital Outputs	0	~		

Information	Beispiel	Beschreibung			
Serial	I001234	Seriennummer der Irinos-Box			
Device	IR-INC-4-SEL1VSS- D15F-ETHIL	Bezeichnung der Irinos-Box			
MAC Address	A0-BB-3E-E0-00-0A	Eindeutige MAC- Adresse der Irinos- Box.			
Order Number	828-5013	Bestellnummer ^{D33} . Diese Nummer beginnt immer mit 8.			
Firmware Version	V1.0.0.11	Versionsnummer der Firmware.			
Hardware Version	V1.1	Versionsnummer der Mess-Hardware.			
Hardware Revision	1	Kompatibilitätskennun g der Hardware für die Firmware.			
Sample Period	50 µs	Interne Abtastperiode in µs.			
Channels	4 channels (32-bit)	Anzahl der Messkanäle und interner Datentyp der jeweiligen Messkanäle.			
Digital Inputs	2	Anzahl der an der Box verfügbaren digitalen Eingänge			
Digital Outputs	0	Anzahl der an der Box verfügbaren digitalen Ausgänge			

Diagnostic (Diagnose-Speicher)

Auf der Webseite Diagnostic wird der Inhalt des Diagnose-Speichers der einzelnen Irinos-Boxen angezeigt:

						TT X H		
	Dia	Diagnostic Id	System Time	Abs. Time	Module	Line	Event	Firmware Version
Massurament	1	System (1)	0	0000-00-00 00:00:00:000	0x2400	138	System started	V0.4.0.1
Network Inventory Diagnostic	2	System (1)	324582150	0000-00-00 00:00:00:000	0x2400	265	Diag memory cleared	V0.4.0.1
Diagnostic memory - Slave 1 (3 Messages)								
		Diagnostic Id	System Time	Abs. Time	Module	Line	Event	Firmware Version
	1	Sine- oscillator (15)	10845360	2016-01-08 12:04:10:663	0x2800	138	Probe short circuit.	V0.4.0.1
	2	System (1)	0	0000-00-00 00:00:00:000	0x2400	138	System started	V0.4.0.1
	3	System (1)	319085180	0000-00-00 00:00:00:000	0x2400	265	Diag memory cleared	V0.4.0.1

Spalte	Beispiel	Bedeutung			
Diagnostic-Id	Sine-oscillator (15)	Typ des <u>Diagnose-</u> <u>Ereignisses</u> ^{⊡™} .			
System Time	15364470	<u>ILink-Zeit</u> ^{D28} in µs seit Einschalten des Irinos- Systems. (Diese interne Zeit ist für alle Irinos-Boxen eines Systems identisch.)			
Abs. Time	2016-01-08 12:04:10:663	Datum und Uhrzeit, an dem das Ereignis aufgetreten ist. Jahr-Monat-Tag Stunde:Minute:Sekund e:Millisekunde			
Module	0x2800	Zusatz-Informationen			
Line	138	für den Support.			
Event	Probe short circuit.	Hilfs-Text für das Ereignis.			
Firmware-Version	mware-Version V0.4.0.1 Firmware-V aufgetreten				

Messung / Steuerung via MscDll

8 Messung / Steuerung via MscDll

- → Weitere Informationen finden Sie im Referenzhandbuch zur MscDll.
- → Für die Anwendung der MscDll stehen Beispiel-Programme in verschiedenen Programmiersprachen zur Verfügung.

8.1 Einleitung

Die MscDll ist das Bindeglied zwischen der Applikationssoftware (Messrechner-Software) und dem Irinos-System. Über sie erfolgt sowohl das Auslesen von Messwerten und Statusinformationen, als auch die System-Parametrierung.

Die MscDll setzt direkt auf den Windows API-Funktionen für die IPbasierte Kommunikation sowie für das Thread-Management und Timing auf. Dadurch ist sie mit verschiedenen Windows-Versionen verwendbar. Sie wurde erfolgreich mit den Windows-Versionen XP 32 Bit sowie 7, 8 und 10 (32 & 64 Bit) getestet. Innerhalb der DLL läuft ein eigener Thread, der die Kommunikation steuert. Die DLL-Funktionen übergeben diesem Thread Daten bzw. umgekehrt.

Die Kommunikation zum Irinos-System erfolgt über UDP/IP. Die DLL wiederholt ein Datenpaket automatisch, bei einem Verlust. Für die Nutzung des Irinos-Systems wird eine Ethernet-Direktverbindung zum Messrechner empfohlen. Komplexe Netzwerkstrukturen, wie beispielsweise umfangreiches Routing, Tunneling, VPN, etc. werden aus Timing-Gründen nicht unterstützt.

In diesem Kapitel sind verschiedene Abläufe und Besonderheiten der Anwendung der MscDll beschrieben. Die detaillierte Spezifikation der einzelnen Befehle / Opcodes ist im Referenzhandbuch aufgeführt.

Es ist grundsätzlich möglich über die MscDll mehrere Irinos-Systeme gleichzeitig anzusprechen. Aufgrund der modularen Konzeption des Irinos-Systems, macht dies jedoch keinen Sinn. Im Folgenden wird deshalb immer nur auf die Kommunikation zu einem Irinos-System eingegangen.

8.2 Grundlagen

Der Grundgedanke des Irinos-Systems ist, dass jegliche Echtzeit-Funktionen innerhalb des Irinos-Systems stattfinden. Der PC oder die Kommunikationskanäle müssen keine weiteren Echtzeitanforderungen erfüllen. Dadurch kann das Irinos-System mit Standard-Windows-Installationen betrieben werden. Erweiterungen wie beispielsweise eine "Echtzeit-Kernel-Erweiterung" sind nicht erforderlich.

Dazu werden die Echtzeit-Daten in der Irinos-Box gepuffert. In der Praxis ist eine längere Kommunikationsunterbrechung zwar die Ausnahme. Je nach Parametrierung kann sie aber sogar für einige hundert Millisekunden aussetzen, ohne dass es zu Datenverlust kommt.

Der Datenaustausch zwischen dem PC und dem Irinos-System wird von der MscDll im Hintergrund automatisch gesteuert. Er muss durch die Applikation lediglich einmalig beim <u>Verbindungsaufbau</u>^D⁺⁺ parametriert werden.

Ein Datenaustausch wird immer vom PC gestartet. Ein Telegramm wird zum Irinos-System gesendet und auf eine Antwort gewartet. Das Irinos-System sendet niemals ein Telegramm, ohne vorher durch den PC dazu aufgefordert zu werden. Nach Erhalt der Antwort wird der nächste Austauschzyklus gestartet, wenn die sogenannte "Sende-Periode" abgelaufen ist.

Die Überwachung der Datenübertragung erfolgt durch Timeouts. Geht ein Datenpaket verloren, so wird nach Ablauf des Timeouts die Übertragung des Paketes wiederholt. Erst bei mehreren vergeblichen Übertragungsversuchen gilt die Kommunikation als gestört.

Innerhalb eines Datenpaketes können verschiedene Arten von Daten enthalten sein, z.B. <u>Messwerte^{D147}</u>, <u>Bit I/Os^{D172}</u> und der <u>Hardware-</u> <u>Status^{D177}</u> (siehe Abbildung). Das Packen bzw. Entpacken der Datenpakete übernimmt die MscDll. Die Applikation muss und kann hier nichts tun.

Paralleler Datenaustausch über die MscDll

In traditionellen Systemen werden Daten von einer oder mehreren Messkarten mit Hilfe der APIs der jeweiligen Karten eingelesen. Da die Messkarten von verschiedenen Herstellern produziert werden, müssen oft mehrere APIs mit verschiedenen Strategien in die Anwendungssoftware integriert werden. Mit dem Irinos-System werden alle Daten, die für eine Messung erforderlich sind, an einer Schnittstelle gebündelt, der MscDll. Es ändert sich immer nur die Anzahl der Messkanäle bzw. der Ein-/Ausgangs- Bits.

Der deutlichste Unterschied zu anderen Systemen ist die Art und Weise, wie Messwerte gelesen werden:

Das Irinos-System überträgt diese Werte im Hintergrund. Messwerte werden nicht explizit von einem Board gelesen. Stattdessen aktualisiert die MscDll diese Werte zu einem vordefinierten Intervall. Die Anwendungssoftware wird bei Ankunft der Daten benachrichtigt. Die Daten können dann gelesen und zur Anzeige, Speicherung, etc. verwendet werden.

8.3 Statische vs. dynamische Messung

Die MscDll unterscheidet zwischen zwei verschiedenen Mess-Modi: der statischen Messung und der dynamischen Messung. Beide können gleichzeitig verwendet werden. Im Folgenden soll zunächst eine Übersicht über diese Mess-Modi gegeben werden. Ausführlicher sind sie in den jeweiligen Kapiteln beschrieben (-> <u>Statische Messung</u> D^{147} / -> <u>Dynamische Messung</u> D^{162}).

Die <u>statische Messung</u>^{D147} liefert kontinuierlich Messwerte. Die Messwerte sind weder synchronisiert, noch werden sie in Echtzeit übertragen. Die typischen Update-Rate liegt je nach Box-Anzahl und Konfiguration bei rund 30-100 Hz je Kanal. Sie ist damit für eine Vielzahl von Messaufgaben vollkommen ausreichend.

Die Anwendung der statischen Messung ist sehr einfach. Nachdem sie über die MscDll gestartet wurde, werden die Messwerte regelmäßig vom Irinos-System abgefragt und in einem von der Applikation bereitgestellten Puffer abgelegt. Die Applikation wird benachrichtigt, sobald neue Messwerte eingegangen sind. Die zuletzt eingegangenen Messwerte können jederzeit durch die Applikation aus dem Puffer ausgelesen werden.

Die statische Messung wird oft auch verwendet, um während einer dynamischen Messung eine Online-Anzeige der aktuellen Messwerte zu haben.

Die <u>dynamische Messung</u>^D¹⁵² wird verwendet, um synchronisierte Echtzeit-Messwerte mit einer maximalen Abtastrate von 10.000 Messwerten/s pro Kanal zu erhalten.

Eine dynamische Messung ist immer zeitlich begrenzt. Typischerweise dauert sie einen Messzyklus lang, was ein paar Sekunden entspricht. Jeder Messwert ist entweder mit einer Zeit oder einer Position (z.B. Winkel) verbunden. Die Messwerte werden zunächst im internen Speicher des Irinos-Systems in Echtzeit abgelegt. Während und je nach Kanalzahl und Abtastrate auch im Anschluss an die dynamische Messung, werden diese Messwerte zur Applikation übertragen.

Dynamische Messungen werden zum Beispiel verwendet, um die Form einer Oberfläche wie z.B. die Rundheit zu messen. Sie nutzen normalerweise eine begrenzte Anzahl von Messeingängen. Eine einfache Rundlaufmessung benötigt zum Beispiel nur einen einzigen Messeingang. Die Anzahl der Messeingänge, die gleichzeitig für die dynamische Messung verwendet werden können, ist auf 32 begrenzt. Beim Start einer dynamischen Messung müssen verschiedene Parameter, wie die beteiligten Messkanäle, der Startpunkt, die Anzahl der Werte, etc. festgelegt werden.

8.4 Einbindung der DLL / Konfiguration

Die Art und Weise, wie die MscDll in die Messrechner-Software eingebunden wird, hängt von der jeweiligen Programmiersprache bzw. Entwicklungsumgebung ab. Für einige Programmiersprachen stehen Anwendungsbeispiele zur Verfügung, die als Einstieg geeignet sind.

Zugehörig zur DLL ist immer die Konfigurations-Datei Msc.cfg, in welcher die Netzwerkeinstellungen des Irinos-Systems hinterlegt sind. Diese muss im gleichen Verzeichnis liegen, wie die MscDll.dll. Die Konfigurationsdatei ist eine Text-Datei, die bei Bedarf manuell editiert werden kann. In der Regel muss lediglich die IP-Adresse des Irinos-Systems geändert werden. Alternativ kann die Konfigurationsdatei auch über das Irinos-Tool erzeugt werden.

8.5 Verbindungs-Aufbau zum Irinos-System

Der Verbindungsaufbau wird in der Regel beim Applikations-Start bzw. beim Start des Messablaufs durchgeführt. Die Verbindung bleibt dann solange bestehen, bis die Applikation wieder beendet wird. Der Ablauf ist in folgender Abbildung dargestellt:

Ablauf "Verbindungsaufbau mit der MscDll"

- Die Funktion MSC_EnumerateDevices listet die Anzahl der gefundenen Irinos-Systeme auf. Dies dauert ca. 2-3 Sekunden. Die Anzahl der gefundenen Systeme wird zurückgegeben. Üblicherweise gibt es nur ein Irinos-System, so dass im Erfolgsfall der Wert 1 und im Fehlerfall der Wert 0 zurückgegeben wird.
- Die Funktion MSC_GetDeviceInfo gibt einen String zurück, der das Irinos-System identifiziert.
- \circ Die Funktion ${\tt MSC_OpenDevice}$ öffnet die Verbindung zum Irinos-System.
- Mit der Funktion MSC_InitDevice wird die Verbindung zum Irinos-System initialisiert.
- Die Funktion MSC_Start startet den Datenaustausch zwischen der MscDll und dem Irinos-System. Mit dieser Funktion werden verschiedene Timeouts definiert. Zusätzlich wird die Sende-Periode

festgelegt, die definiert, wie oft neue Daten vom Irinos-System abgefragt werden sollen. Im Referenzhandbuch sind einige Beispielwerte aufgeführt.

Die Sende-Periode hat auch Einfluss darauf, wie oft statische Messwerte vom Irinos-System abgefragt werden. Für die meisten Applikationen ist der Wert 1 (= 1ms) für die Sende-Periode angemessen.

Die beiden häufigsten Ursachen für einen fehlgeschlagenen Verbindungsaufbau sind entweder eine fehlerhafte Netzwerkkonfiguration oder ein falscher Eintrag in der Konfigurations-Datei Msc.cfg (-> <u>"Erste Hilfe Netzwerkverbindung"</u> D²⁰²).

Es wird empfohlen, den <u>System-Aufbau</u>^{D™} des Irinos-Systems nach dem Verbindungsaufbau immer zu prüfen.

8.6 Verbindung beenden

Eine Verbindung zum Irinos-System muss immer beendet werden, bevor die Applikation (Messrechner-Software) geschlossen wird. Es kann sonst zu einer Exception kommen. Folgende Abbildung zeigt den Ablauf für das Beenden:

 \circ Die Funktion ${\tt MSC_Stop}$ beendet den Datenaustausch mit dem Irinos-System.

 \circ Die Funktion ${\tt MSC_CloseDevice}$ schließt die Verbindung zum Irinos-System.

8.7 Statische Messung

Auf den Start einer statischen Messung kann zwar theoretisch verzichtet werden, wenn die Messwert-Erfassung über die dynamische Messung abläuft. In der Praxis wird eine statische Messung jedoch immer gestartet, beispielsweise um eine Live-Anzeige der Mess-Eingänge während einer dynamischen Messung zu realisieren. Den Ablauf für den Start der statischen Messung zeigt folgende Abbildung:

Ablauf "Statische Messung starten"

 Die Funktion MSC_SetupStaticChannel startet in Verbindung mit dem Opcode opcRS (0x40) die kontinuierliche Abfrage der statischen Messwerte durch die MscDll. Der Funktion muss dazu ein Puffer übergeben werden. In diesem Puffer legt sie die Messwerte ab. Alle Messwerte werden als "32 Bit signed integer" – Werte im LittleEndian-Format in diesem Puffer abgelegt, unabhängig vom Datentyp, den der jeweilige Messkanal hat.

Die notwendige Größe des Puffers leitet sich aus der Anzahl der Mess-Kanäle ab. Je Mess-Kanal sind 4 Bytes erforderlich, z.B.: 8 Mess-Kanäle -> 32 Bytes 64 Mess-Kanäle -> 256 Bytes

Bytes (Hex) Größe Inhalt Messwert Mess-0x00 .. 0x03 4 Bytes Kanal 1 Messwert Mess-0x04 .. 0x07 4 Bytes Kanal 2 Messwert Mess-0x08 .. 0x0B 4 Bytes Kanal 3 Messwert Mess-0x0C .. 0x0F 4 Bytes Kanal 4 Messwert Mess-0x10 .. 0x13 4 Bytes Kanal 5 Messwert Mess-0x14 .. 0x17 4 Bytes Kanal 6 Messwert Mess-0x18 .. 0x1B 4 Bytes Kanal 7 Messwert Mess-0x1C .. 0x1F 4 Bytes Kanal 8 Messwert Mess-0x20 .. 0x23 4 Bytes Kanal 9 usw. Messwert Mess-4 Bytes Kanal n

Folgende Tabelle zeigt die Puffer-Aufteilung:

o Nach Aufruf der Funktion MSC_SetNotificationMessage (alternativ

MSC_SetNotificationEvent oder MSC_SetNotificationCallback) in Verbindung mit dem Opcode opcRS (0x40) benachrichtigt die MscDll die Applikation jedes Mal, wenn neue statische Messwerte eingetroffen sind. Die Applikation kann dann selbst entscheiden, ob sie diese aus dem Puffer ausliest oder ignoriert. Die Verwendung von Benachrichtigungen ist empfohlen, jedoch nicht zwingend erforderlich.

 Die Messwerte werden zunächst in einem internen Puffer der MscDll vorgehalten. Um die Messwerte in den Puffer der Applikation zu kopieren, muss die Funktion MSC_ReadStatic in Verbindung mit dem Opcode opcRS (0x40) aufgerufen werden (siehe folgende Abbildung). Dieser Vorgang muss nach jedem Eintreffen neuer Messwerte ausgeführt werden.

kopieren"

Messwert-Updates / Update-Rate

Die Anzahl der Messwert-Updates hängt von zwei Faktoren ab:

- o Der Abfrage-Rate durch die MscDll.
- $_{\odot}$ Der internen Aktualisierungs-Rate des Irinos-Systems.

Die Abfrage-Rate durch die MscDll wird durch die Sende-Periode definiert, die beim Start der Verbindung mit MSC_Start angegeben wird (siehe Verbindungsaufbau^{D™}). Bei einer Abfrage-Rate von 30ms erfolgen ca. 30 Messwert-Updates/s; bei 20ms ca. 50 Messwert-Updates/s. Die in der Praxis maximal erzielbare Abfrage-Rate mit einer Sende-Periode von 1ms liegt bei etwas über 100 Messwert-Updates/s.

Die interne Aktualisierungs-Rate des Irinos-Systems hängt davon ab,

ob gleichzeitig eine dynamische Messung aktiv ist und von der Anzahl der im Irinos-System vorhandenen Irinos-Boxen. Wenn eine dynamische Messung aktiv ist, dann ist die Aktualisierungs-Rate immer ca. 30 Messwert-Updates/s. Ist keine dynamische Messung aktiv, dann ist die Aktualisierungs-Rate bis 8 Irinos-Boxen ca. 100 Messwert-Updates/s. Bei 32 Irinos-Boxen sind es ca. 30 Messwert-Updates/s.

Folgende Tabelle zeigt die typisch erreichbare Anzahl an Messwert-Updates für verschiedenen Kombinationen aus "Sende-Periode" und "Anzahl Irinos-Boxen", wenn keine dynamische Messung aktiv ist:

Sende- Periode MscDll	Abfrage- Rate MscDll	Anzahl Irinos- Boxen	Interne Aktualisier ungs-Rate	Ungefähre Anzahl reale
				Messwert- Updates je Mess- Kanal
[ms]	Updates/s		Updates/s	Updates/s
30	30	≤ 8	100	30
30	30	12	80	30
30	30	16	60	30
30	30	24	45	30
30	30	32	30	30
20	50	≤ 8	100	50
20	50	12	80	50
20	50	16	60	50
20	50	24	45	45
20	50	32	30	30
1	100	≤ 8	100	100
1	100	12	80	80
1	100	16	60	60
1	100	24	45	45
1	100	32	30	30

→ Empfohlene Sende-Periode 1ms ist f
ür die meisten Applikationen passend.

> Die Anzahl der Messwert-Updates bezieht sich immer auf alle Kanäle gemeinsam, d.h. es spielt keine Rolle, ob beispielsweise 7 oder 23 oder 41 statische Messkanäle verwendet werden.

Bei klassischen Systemen ist die Update-Rate oft von der Anzahl der verwendeten Mess-Kanäle abgängig und damit deutlich geringer, als auf den ersten Blick angenommen. Diese Einschränkung gilt beim Irinos-System nicht.

Bitte beachten Sie, dass alle angegebenen Werte Anhaltspunkte sind und keine garantierten Werte. Im Falle eines Übertragungs-Timeouts kann eine längere Pause zwischen zwei Messwert-Updates auftreten. Für eine garantierte Abtastrate muss die dynamische Messung verwendet werden.

8.8 Dynamische Messung

→ Beachten Sie auch die <u>Beispiele zu den dynamischen Messungen</u> ^D¹⁰⁵ sowie in den Beispiel-Programmen.

8.8.1 Grundlagen

Eine dynamische Messung ist zeitlich begrenzt. Sie wird immer zu Beginn eines zu vermessenden Werkstückes gestartet. Die zulässige Dauer einer dynamischen Messung ist 1 Stunde, was in der Praxis jedoch keinen Sinn ergibt. Üblicherweise liegt die Messdauer im Sekunden-Bereich.

Es wird zwischen **zwei Arten der dynamischen Messung** unterschieden:

 Bei der Zeit-gesteuerten dynamischen Messung werden die Messwerte aller beteiligten Mess-Kanäle synchron in äquidistanten Zeitabständen aufgezeichnet. So können bis zu 10.000 Messwerte/s pro Kanal aufgezeichnet werden. Bei der Positions-gesteuerten dynamischen Messung werden die Messwerte synchron in gleichmäßigen Positionsabständen aufgezeichnet. Dazu ist immer ein Mess-Kanal erforderlich, der die Positions-Information bereitstellt. Beispielsweise können mit einem inkrementellen Drehgeber für eine Rundlaufmessung 360 Messwerte / Umdrehung aufgenommen werden. Der Mess-Kanal, der die Positions-Information bereitstellt, wird intern mit 1.000 Hz abgetastet.

Die positions-gesteuerte Messung ist besonders dann geeignet, wenn die Geschwindigkeit des zu vermessenden Werkstücks bzw. der Messtaster während der Messung stark schwankt, z.B. wenn ein Drehteller von Hand oder mit einem ungeregelten Antrieb bewegt wird.

Bei Verwendung eines modernen Servo-Antriebes ist die Geschwindigkeits-Regelung häufig so gut, dass auch mit der Zeitgesteuerten dynamischen Messung praktisch konstante Positionsoder Winkel-Abstände erreicht werden können.

Vor dem Start einer dynamischen Messung muss dem Irinos-System mitgeteilt werden, wie und was gemessen werden soll. D.h. die dynamische Messung muss konfiguriert werden. Folgende Abbildung zeigt den Beispiel-Ablauf einer dynamischen Messung von der Konfiguration bis zum Ende:

Messung / Steuerung via MscDll

- a) Über die Funktion MSC_WriteCommand in Verbindung mit dem Opcode opcWCL (0x22) wird die Kanalliste für die dynamische Messung zum Irinos-System übertragen.
- b) In der Kanalliste sind alle diejenigen Messkanäle aufgeführt, deren

Messwerte während der dynamischen Messung aufgezeichnet werden sollen. Es können maximal 32 Mess-Kanäle in die dynamische Messung einbezogen werden.

- c) Über die Funktion MSC_WriteCommand in Verbindung mit dem Opcode opcDT (0x30) wird der für die dynamische Messung verwendete Trigger definiert. Die Trigger-Definition beschreibt:
 - \circ Ob es sich um eine Zeit- oder Positions-gesteuerte dynamische Messung handelt.
 - Welcher Mess-Kanal die Positions-Informationen bereitstellt (bei einer Positions-gesteuerten Messung).
 - o Wann die Messung beginnen soll.
 - In welchen Zeit- bzw. Positons-Abständen Messwerte aufgenommen werden sollen.
 - \circ Ob und falls ja wann die Messung automatisch beendet werden soll.
- d) Über die Funktion MSC_WriteCommand in Verbindung mit dem Opcode opcDDMx (0x50/0x51) wird die dynamische Messung selbst definiert. Die Definition beschreibt:
 - Welche Kanalliste f
 ür die dynamische Messung verwendet werden soll.
 - Welche Trigger-Konfiguration verwendet werden soll.
 - Wieviele Messwerte maximal aufgenommen werden sollen.
- e) Über die Funktion MSC_SetupExtendedDynamicChannel mit dem Opcode opcRDMx (0x60/0x61) wird ein Übertragungs-Kanal für dynamische Messwerte festgelegt. Der Übertragungs-Kanal ist notwendig, damit die Messwerte vom Irinos-System zum PC / zur Applikation übertragen werden können.
- f) Über die Funktion MSC_AttachSubChannelBuffer mit dem Opcode opcRDMx (0x60/0x61) wird ein zuvor allokierter Messwert-Puffer für die Ablage der dynamischen Messwerte der MscDll bereitgestellt.

Es muss für jeden in der dynamischen Messung verwendeten Messkanal ein eigener Puffer allokiert und über diese Funktion bereitgestellt werden. D.h. wenn beispielsweise 5 Messkanäle verwendet werden, dann müssen 5 Messwertpuffer allokiert werden und jeweils über diese Funktion der MscDll zugewiesen werden.

Die Größe der einzelnen Puffer ist immer identisch. Sie richtet sich nach der maximalen Anzahl an Messwerten, welche bei der dynamischen Messung zu erwarten sind. Wie bei der statischen Messung <u>wird jeder Messwert als 32Bit-Wert abgelegt</u>^{D™}.

- g) Über die Funktion MSC_WriteCommand in Verbindung mit dem Opcode opcAT (0x31) wird der für die dynamische Messung verwendete Trigger aktiviert. Die dynamische Messung ist nun aktiv.
- h) Über die Funktion MSC_GetPosition kann von nun an abgefragt werden, wieviele Messwerte der dynamischen Messung die MscDll bereits in die übergebenen Puffer kopiert hat. Über die Funktion MSC_WriteCommand in Verbindung mit dem Opcode opcRSW (0x44) kann das Statuswort der dynamischen Messung abgefragt werden. Ein darin enthaltenes Bit sagt aus, ob die dynamische Messung beendet wurde.

Üblicherweise wird mindestens eine dieser Funktionen zyklisch aufgerufen, während die dynamische Messung aktiv ist, um deren Status zu bestimmen. Wann eine dynamische Messung für beendet erklärt wird, hängt

von der Applikation ab. Der sichere Weg ist die Abfrage des Bits im Statuswort.

 i) Es empfiehlt sich den Trigger im Anschluss an die dynamische Messung über die Funktion MSC_WriteCommand in Verbindung mit dem Opcode opcIT (0x32) zu deaktivieren. Damit ist bei einer Neu-Parametrierung der dynamischen Messung sichergestellt, dass diese nicht vor dem gewünschten Start-Zeitpunkt losläuft.

Bei einer neuen dynamischen Messung können die Schritte a) bis d) jeweils entfallen, wenn sich die entsprechende Konfiguration nicht geändert hat. Folgende Abbildung zeigt dies für eine wiederholte dynamische Messung mit identischer Konfiguration:

8.8.2 Weiterführende Hinweise

Zwei dynamische Messungen gleichzeitig

Es können zwei voneinander unabhängige dynamische Messungen gleichzeitig ausgeführt werden. Diese werden anhand der Opcodes unterschieden, welche den Funktionen übergeben werden. Die Opcodes lauten:

- Dynamische Messung 1: opcDDM1 (0x50) und opcRDM1 (0x60)
- Dynamische Messung 2: opcDDM2 (0x51) und opcRDM2 (0x61)

Wenn zwei zeitgesteuerte dynamische Messungen gleichzeitig ausgeführt werden, dann ist die Summe beider Abtastraten auf 5.000 Messwerte/s begrenzt. D.h. zulässig sind beispielsweise:

- Zeitgesteuerte dynamische Messung 1 mit Abtastperiode 0,3ms (=3.333,33 Messwerte/s) und zeitgesteuerte dynamische Messung 2 mit Abtastperiode 0,75ms (=1.333,33 Messwerte/s). Summe: 4.666,66 Messwerte/s
- Zeitgesteuerte dynamische Messung 1 und 2, jeweils mit Abtastperiode 0,5ms (=2.000 Messwerte/s).
 Summe: 4.000 Messwerte/s

Wenn eine positionsgesteuerte und eine zeitgesteuerte dynamische Messung durchgeführt wird, dann ist die kürzeste zulässige Abtastperiode der zeitgesteuerten Messung 1ms (=1.000 Messwerte/s).

Unter der Voraussetzung, dass die dynamischen Messungen jeweils nicht länger als 60 Sekunden andauern, ist die kürzeste zulässige Abtastperiode der zeitgesteuerten Messung 0,25ms (=4.000 Messwerte/s).

Zwei positionsgesteuerte dynamische Messungen können gleichzeitig ausgeführt werden.

Trigger-Abstand (Abtastrate) der zeitgesteuerten dynamischen Messung

Der Trigger-Abstand der zeitgesteuerten Messung muss ein Vielfaches der Abtastrate der beteiligten Irinos-Boxen sein. Alle derzeit verfügbaren Irinos-Boxen haben eine Abtastrate von 0,05 ms = 50μ s. Beispiele für zulässige Abtastraten sind in folgender Tabelle aufgeführt:

Trigger-Abstand	Messwerte pro Sekunde
0,1 ms	10.000
0,15 ms	6.666,666
0,2 ms	5.000
0,25 ms	4.000
0.4 ms	2.500
0.5 ms	2.000
1 ms	1.000
2 ms	500
4 ms	250
10 ms	100

Anzahl der Messkanäle vs. Abtastrate

Alle angegebenen Abtastperioden sind je Mess-Kanal, d.h. es spielt keine Rolle, ob 1, 5 oder 17 Mess-Kanäle an einer dynamischen Messung beteiligt sind. Einzige Grenze ist die maximale Anzahl an Messkanälen (32).

Speichertiefe / Max. Anzahl Messwerte

Jede dynamische Messung hat einen internen Puffer, in welchem 100.000 Messwerte je Kanal abgelegt werden können. Wenn dieser Puffer voll ist, dann wird die Messung automatisch abgebrochen.

Wenn während einer dynamischen Messung bereits Messwerte durch die MscDll ausgelesen werden, dann leert sich dieser Puffer wieder und es können mehr als 100.000 Messwerte je Kanal aufgezeichnet werden. Da die Auslese-Geschwindigkeit aber von verschiedenen Faktoren abhängig ist, kann hierfür kein garantierter Wert genannt werden.

10 Kanallisten

Das Irinos-System kennt 10 verschiedene Kanallisten. Jeder dynamischen Messung kann eine dieser Kanallisten zugeordnet werden.

Dadurch ist es beispielsweise möglich bei abwechselnden Kanal-Konfigurationen die Kanal-Liste nicht jedes Mal neu zu schreiben, sondern bei der Konfiguration der dynamischen Messung über den Opcode opcDDMx immer nur die benötigte Kanalliste anzugeben.

2 Trigger-Konfigurationen

Das Irinos-System kennt 2 Trigger-Konfigurationen. Jeder dynamischen Messung kann eine dieser Trigger-Konfigurationen zugeordnet werden. Es ist auch möglich dieselbe Trigger-Konfiguration für beide dynamischen Messungen zu verwenden. Dann werden diese allerdings über die Opcodes opcAT (0x31) und opcIT (0x32) auch gleichzeitig gestartet bzw. gestoppt.

Konfiguration während einer Messung

Beim Start einer dynamischen Messung wird intern eine Kopie der zugeordneten Kanalliste und Trigger-Konfiguration erzeugt und der Messung fest zugeordnet. D.h. wird eine Kanalliste oder eine Trigger-Konfiguration geändert während eine dynamische Messung aktiv ist, so hat dies keine Auswirkung auf die dynamische Messung.

8.8.3 Ablage der dynamischen Messwerte

Die Ablage der dynamischen Messwerte erfolgt in Messwert-Puffern, welche die Applikation der MscDll bereitstellen muss. Für jeden Mess-Kanal, der in der dynamischen Messung verwendet wird, ist ein eigener Messwert-Puffer erforderlich. Die Anzahl der Mess-Kanäle ergibt sich also aus der verwendeten Kanalliste.

Beispiel:

Für die dynamische Messung wird die Kanalliste 1 verwendet. Diese
ist wie folgt definiert:
#1;T2;T4;T5;T6;T17#

-> Die Kanalliste enthält 5 Messkanäle, d.h. es sind 5 Messwert-Puffer erforderlich.

Die Größe eines Puffers leitet sich wiederum aus der maximalen Anzahl an Messwerten ab, welche bei der dynamischen Messung aufgezeichnet werden. Alle Messwerte werden als "32 Bit signed integer" – Werte im LittleEndian-Format in diesem Puffer abgelegt, unabhängig vom Datentyp, den der jeweilige Messkanal hat. Demzufolge gilt:

o Alle Puffer einer dynamischen Messung sind gleich groß.

o Für jeden Messwert werden 4 Bytes benötigt.

Beispiel:

Eine zeitgesteuerte dynamische Messung soll 2,5 Sekunden dauern. Die Abtastrate beträgt 4.000 Messwerte/s. Die erforderliche Puffergröße je Messkanal ist also

 $4000 \frac{Messwerte}{s} * 2,5s * 4 \frac{Bytes}{Messwert} = 40000 Bytes$

Die Messwerte werden vom Irinos-System immer in zeitlich zusammenhängenden Datenblöcken zur MscDll übertragen. Diese legt sie in den bereitgestellten Messwert-Puffern ab (siehe folgende Abbildung). Die MscDll übernimmt dabei das sogenannte Demultiplexing, d.h. sie sorgt dafür, dass die Messwerte in der richtigen Reihenfolge in den Messwert-Puffern abgelegt werden.

Alle Puffer haben immer denselben Füllstand. D.h. der durch den Aufruf der Funktion MSC_GetPosition gelieferte Puffer-Füllstand gilt für alle Messwert-Puffer einer dynamischen Messung.

Messung / Steuerung via MscDll

Die Daten werden in Blöcken variabler Größe gesendet. Die Anzahl der Werte hängt vom Fortschritt der Messung und der Paket-Größe ab.

Alle Mess-Kanäle, die zu einer dynamischen Messung gehören (definiert durch die Kanalliste), nehmen ihre Werte synchron auf. Deshalb haben alle diese Puffer denselben Füllstand.

Der Füllstand kann mit dem Befehl MSC_GetPosition ausgelesen werden. Für jede dynamische Messung wird nur ein Füllstand benötigt.

Ablage der dynamischen Messwerte

8.9 Beispiele zur dynamischen Messung

Die folgenden Beispiele sollen eine Hilfestellung für die Anwendung der <u>dynamischen Messung</u>^{D152} darstellen. Verwenden Sie diese in Verbindung mit den Beispiel-Programmen als Ausgangspunkt für die Implementierung der dynamischen Messung in Ihre Applikation.

Der Übersichtlichkeit halber wurde in den Code-Beispielen auf eine ausführliche Fehlerbehandlung verzichtet. Diese sollte in Ihrer Applikation jedoch implementiert werden. Für die Code-Beispiele wird ein Pseudo-Code verwendet, der sich leicht in verschiedene Programmiersprachen portieren lässt.

In den Beispielen wird eine Funktion WriteCommandStr verwendet, die über MSC_WriteCommand einen ASCII-String sendet und einen Antwortstring empfängt. Diese ist auch in den Beispiel-Applikationen enthalten.

8.9.1 Beispiel 1: Zeitgesteuerte dynamische Messung

Aufgabenstellung

An einem 12cm langen Werkstück soll von zwei Seiten die Planarität der Oberfläche ermittelt werden. Dazu wird auf jeder Seite ein inkrementeller Messtaster aufgesetzt (T2 und T3). Das Werkstück wird über einen Servo-Antrieb mit praktisch konstanter Geschwindigkeit entlang des Werkstücks bewegt.

Es dauert ca. 2 Sekunden, um das Werkstück an den Messtastern entlang zu bewegen. Um auch kleinste Unebenheiten zu erfassen, ist eine Abtastrate von 5.000 Messwerten/s erforderlich.

Die Position des Werkstücks wird über einen linearen Inkrementalgeber mit 32000 Inkrementen/cm erfasst (T4) und zur anschließenden Verrechnung der Messtaster-Werte benötigt.

Beispiel "zeitgesteuerte dynamische Messung"

Vorüberlegungen

Es ist bekannt, dass die Messung ca. 2 Sekunden dauert, eine genaue Dauer ist aber nicht bekannt. Deshalb muss die dynamische Messung zunächst mit einer Dauer gestartet werden, die länger ist. Es werden 4 Sekunden gewählt. Während der dynamischen Messung wird dann anhand der Position des Werkstückes (T4) geprüft, ob alle erforderlichen Messwerte aufgenommen wurden. Falls ja, wird die dynamische Messung beendet.

Die Werkstücklänge in Inkrementen des Inkrementalgebers T4

beträgt $\frac{32000 \frac{Inkremente}{cm} * 12cm}{cm} = 384000 Inkremente}$. Sobald dieser Wert erreicht ist, ist die dynamische Messung beendet.

Beispiel-Code

```
// Kanalliste 1 mit den Tastern T2, T3 und T4 erstellen und zum
Gerät schreiben
ansiString = "#1;T2;T3;T4#";
WriteCommandStr(opcWCL, ansiString);
if (ansiString != "#0#") return -1; // Abbruch aufgrund eines
Fehlers
// Trigger definieren:
// TriggerNr 1; Zeitgesteuert; * = kein Eingangskanal
erforderlich; Divisor = 1;
// Intervall = 0.2ms (-> 5000 Messwerte/s); Start = 0ms; Ende =
4000ms
ansiString = "#1;T;*;1;0.2;0;4000#";
WriteCommandStr(opcDT, ansiString);
if (ansiString != "#0#") return -2; // Abbruch aufgrund eines
Fehlers
```

// Dynamische Messung 1 definieren:

Messung / Steuerung via MscDll

```
// TriggerNr 1; Kanalliste 1; Dyn. Messung aktiv;
// 5s * 4000 Messwerte/s = 20000 Messwerte
ansiString = "#1;1;1;20000#";
WriteCommandStr(opcDDM1, ansiString);
if (ansiString != "#0#") return -3; // Abbruch aufgrund eines
Fehlers
// Übertragungs-Kanal für dynamische Messwerte einrichten
result = MSC SetupExtendedDynamicChannel(pDevice, opcRDM1, 3,
1, NULL);
if (result != MSC STATUS SUCCESS) return -4;
// 3 Puffer mit jeweils 20000 * 4 Bytes = 80000 Bytes für die
Messwerte
// allokieren und der DLL zuweisen
for (i = 0; i < 3; i++) {
  buffer[i] = malloc(20000*4);
  result = MSC AttachSubChannelBuffer(pDevice, opcRDM1, i,
20000*4, &buffer[i]);
  if (result != MSC STATUS SUCCESS) return -5;
}
// Trigger aktivieren
ansiString = "#1#";
WriteCommandStr(opcAT, ansiString);
if (ansiString != "#0#") return -6; // Abbruch aufgrund eines
Fehlers
// Ende der dynamischen Messung abwarten
do {
  result = MSC GetPosition(pDevice, opcRDM1, &nMesswerte);
  if (result != MSC STATUS SUCCESS) return -7;
  Sleep(50); // 50 ms Pause als Beispiel
} while ((nMesswerte < 20000) && (statischerMesswertT4 <
384000));
// Trigger de-aktivieren
ansiString = "#1#";
WriteCommandStr(opcIT, ansiString);
// Die Messwerte stehen nun zur Verfügung und können
ausgewertet werden
```

Es wird davon ausgegangen, dass die <u>statische Messung</u>^{D+*} parallel läuft. Die Variable statischerMesswertT4 enthält dabei den Messwert des Inkremental-Gebers T4, der zuletzt mit der statischen Messung übertragen wurde.

8.9.2 Beispiel 2: Positionsgesteuerte dynamische Messung

Aufgabenstellung

An einem Werkstück soll eine Rundlaufmessung durchgeführt werden. Das Werkstück befindet sich dazu auf einem Drehteller und wird von einem ungeregelten Antrieb in ca. 5 Sekunden einmal gedreht. Während dieser Umdrehung sollen 720 Messwerte in 0,5°-Schritten aufgezeichnet werden.

Zwischen Antrieb und Drehteller befindet sich ein inkrementeller Drehgeber mit 3600 Inkrementen pro Umdrehung (Drehrichtung: positiv). Das Werkstück wird mittels zweier induktiver Messtaster vermessen (siehe Abbildung).

Der Inkrementalgeber befindet sich am Mess-Eingang T12, die beiden induktiven Messtaster an den Mess-Eingängen T4 und T5.

Beispiel "positionsgesteuerte dynamische Messung"

Vorüberlegung

Basierend auf der Inkrementalgeber-Auflösung von 3600 Inkrementen pro Umdrehung und der Schrittweite von 0,5°, beträgt die Schrittweite zwischen zwei Messwerterfassungen 5 Inkremente.

Beispiel-Code

```
// Kanalliste 1 mit den Tastern T4 und T5 erstellen und zum
Gerät schreiben
ansiString = "#1;T4;T5#";
WriteCommandStr(opcWCL, ansiString);
if (ansiString != "#0#") return -1; // Abbruch aufgrund eines
Fehlers
// Trigger definieren:
// TriggerNr 1; Positionsgesteuert; Positionsgeber = Messkanal
T12; Divisor = 1; // Intervall = 5; Start = 0; Ende: * = ohne
ansiString = "#1;P;T12;1;5;0;*#";
WriteCommandStr(opcDT, ansiString);
if (ansiString != "#0#") return -2; // Abbruch aufgrund eines
Fehlers
```

Messung / Steuerung via MscDll

```
// Dynamische Messung 1 definieren:
// TriggerNr 1; Kanalliste 1; Dyn. Messung aktiv; 720 Messwerte
ansiString = "#1;1;1;720#";
WriteCommandStr(opcDDM1, ansiString);
if (ansiString != "#0#") return -3; // Abbruch aufgrund eines
Fehlers
// Übertragungs-Kanal für dynamische Messwerte einrichten
result = MSC SetupExtendedDynamicChannel(pDevice, opcRDM1, 2,
1, NULL);
if (result != MSC STATUS SUCCESS) return -4;
// 2 Puffer mit jeweils 720 * 4 Bytes = 2880 Bytes für die
Messwerte allokieren // und der DLL zuweisen
for (i = 0; i < 2; i++) {
  buffer[i] = malloc(720*4);
  result = MSC AttachSubChannelBuffer(pDevice, opcRDM1, i,
720*4, &buffer[i]);
  if (result != MSC STATUS SUCCESS) return -5;
}
// Trigger aktivieren
ansiString = "#1#";
WriteCommandStr(opcAT, ansiString);
if (ansiString != "#0#") return -6; // Abbruch aufgrund eines
Fehlers
// Ende der dynamischen Messung abwarten
do {
  result = MSC GetPosition(pDevice, opcRDM1, &nMesswerte);
  if (result != MSC STATUS SUCCESS) return -7;
  Sleep(50); // 50 ms Pause als Beispiel
} while (nMesswerte < 720);</pre>
// Trigger de-aktivieren
ansiString = "#1#";
WriteCommandStr(opcIT, ansiString);
// Die Messwerte stehen nun zur Verfügung und können
ausgewertet werden
```

Beginn der dynamischen Messung

Ein häufig auftretendes Anwendungs-Problem bei derartigen Messungen, ist der Beginn der dynamischen Messung. In obigem Beispiel-Code wird von der Start-Position 0 ausgegangen. Dies funktioniert aber nur dann, wenn der Drehteller vor Beginn der Messung soweit zurückgedreht wird, dass die Position des Inkrementalgebers T12 negativ ist. Dies ist nicht in allen Fällen möglich oder sinnvoll.

Zur Lösung des Problems kann die Position des Inkrementalgebers mit der Funktion $MSC_WriteCommand$ in Verbindung mit dem Opcode opcSP (0x35) auf einen definierten Wert gesetzt werden. Wenn der

Inkrementalgeber einer Referenzmarke hat, dann ergibt sich damit eine sehr elegante Lösung:

- a) Vor Beginn der Messung wird die Inkrementalgeber-Position auf einen Wert gesetzt, der vor dem Start der Messung liegt. Im Beispiel also < 0, z.B. -100.000. Gleichzeitig wird die Referenzmarke aktiviert.
- b) Die Messung wird gestartet. Der Antrieb beginnt zu drehen.
- c) Mit Erreichen der Referenzmarke wird die Inkrementalgeber-Position auf 0 gesetzt. Die dynamische Messung nimmt ab jetzt die Messwerte auf.

An obigem Beispiel-Code müsste dazu vor dem Aktivieren des Triggers folgender Code ausgeführt werden:

```
// Inkrementalgeber-Position setzen und Referenzmarke
aktivieren
ansiString = "#T12;-100000;REFON#";
WriteCommandStr(opcSP, ansiString);
if (ansiString != "#0#") return -8; // Abbruch aufgrund eines
Fehlers
```

Für manche Applikationen hat diese Lösung den Nachteil, dass die Position nach erneutem Überschreiten der Referenzmarke, also im Beispiel nach 3600 Inkrementen, wieder auf 0 gesetzt wird. Wenn dies nicht gewünscht ist, so kann während der dynamischen Messung die Referenzmarke wieder deaktiviert werden, ohne die Inkrementalgeber-Position zu verändern. Dazu wird in die do-while – Schleife wie folgt abgeändert:

```
// Ende der dynamischen Messung abwarten
merkerEinmalig = true;
do {
   result = MSC_GetPosition(pDevice, opcRDM1, &nMesswerte);
   if (result != MSC_STATUS_SUCCESS) return -7;
   if ((merkerEinmalig == true) && (statischerMesswertT12 > 0))
{
      merkerEinmalig = false;
      ansiString = "#T12;*;REFOFF#";
      WriteCommandStr(opcSP, ansiString);
      if (ansiString != "#0#") return -9; // Abbruch aufgrund
eines Fehlers
   }
   Sleep(50); // 50 ms Pause als Beispiel
} while (nMesswerte < 720);</pre>
```

Es wird davon ausgegangen, dass die statische Messung parallel läuft. Die Variable statischerMesswertT12 enthält dabei den Messwert des Inkremental-Gebers T12, der zuletzt mit der statischen Messung übertragen wurde.

8.9.3 Beispiel 3: 2 dynamische Messungen gleichzeitig

Aufgabenstellung

Es sollen zwei Werkstücke parallel zeit-gesteuert vermessen werden. Aufgrund der unterschiedlichen Werkstück-Eigenschaften ist für das Werkstück 1 eine Abtastrate von 4.000 Messwerten/s erforderlich, für das Werkstück 2 ist eine Abtastrate von 1.000 Messwerten/s ausreichend.

Für die Bewertung von Werkstück 1 sind Messwerte der Mess-Kanäle T1, T2, T3 und T9 erforderlich.

Für die Bewertung von Werkstück 2 sind Messwerte der Mess-Kanäle T2, T6, T7, T8, T10, T11 und T12 erforderlich.

Beide dynamische Messungen sollen gleichzeitig gestartet werden. Die erste Messung dauert 2,5 Sekunden. Die zweite Messung soll beendet werden, nachdem 5000 Messwerte aufgezeichnet wurden.

Beispiel-Code

```
// Kanalliste 1 mit den Tastern T1, T2, T3 und T9 erstellen und
zum Gerät
// schreiben. Diese wird für die erste dynamische Messung
benötigt.
ansiString = "#1;T1;T2;T3;T9#";
WriteCommandStr(opcWCL, ansiString);
if (ansiString != "#0#") return -101; // Abbruch aufgrund eines
Fehlers
// Kanalliste 2 mit den Tastern T5, T6, T7, T8, T10, T11 und
T12 erstellen und
// zum Gerät schreiben. Diese wird für die zweite dynamische
Messung benötigt.
ansiString = "#2;T2;T6;T7;T8;T10;T11;T12#";
WriteCommandStr(opcWCL, ansiString);
if (ansiString != "#0#") return -201; // Abbruch aufgrund eines
Fehlers
// Trigger 1 definieren. Dieser wird für die erste dynamische
Messung benötigt.
// TriggerNr 1; Zeitgesteuert; * = kein Eingangskanal
erforderlich; Divisor = 1; // Intervall = 0.25ms (-> 4000
Messwerte/s); Start = 0ms; Ende = 2500ms
ansiString = "#1;T;*;1;0.25;0;2500#";
WriteCommandStr(opcDT, ansiString);
```

```
if (ansiString != "#0#") return -102; // Abbruch aufgrund eines
Fehlers
// Trigger 2 definieren. Dieser wird für die zweite dynamische
Messung benötigt.
// TriggerNr 2; Zeitgesteuert; * = kein Eingangskanal
erforderlich; Divisor = 1; // Intervall = 1ms (-> 1000
Messwerte/s); Start = Oms; Ende: * = ohne
ansiString = "#2;T;*;1;1;0;*#";
WriteCommandStr(opcDT, ansiString);
if (ansiString != "#0#") return -202; // Abbruch aufgrund eines
Fehlers
// Dynamische Messung 1 definieren:
// TriggerNr 1; Kanalliste 1; Dyn. Messung aktiv;
// Anzahl Messwerte: * = unbegrenzt
ansiString = "#1;1;1;*#";
WriteCommandStr(opcDDM1, ansiString);
if (ansiString != "#0#") return -103; // Abbruch aufgrund eines
Fehlers
// Dynamische Messung 2 definieren:
// TriggerNr 2; Kanalliste 2; Dyn. Messung aktiv;
// Anzahl Messwerte: * = unbegrenzt
ansiString = "#2;2;1;5000#";
WriteCommandStr(opcDDM2, ansiString);
if (ansiString != "#0#") return -203; // Abbruch aufgrund eines
Fehlers
// Übertragungs-Kanal für dynamische Messung 1 einrichten
result = MSC SetupExtendedDynamicChannel(pDevice, opcRDM1, 4,
1, NULL);
if (result != MSC STATUS SUCCESS) return -104;
// 4 Puffer mit jeweils 2,5s * 4000Messwerte/s * 4 Bytes/
Messwert = 40000 Bytes // für die Messwerte der ersten
dynamischen Messung allokieren und der DLL
// zuweisen
for (i = 0; i < 4; i++) {
  bufDyn1[i] = malloc(40000);
  result = MSC AttachSubChannelBuffer(pDevice, opcRDM1, i,
40000, &bufDyn1[i]);
  if (result != MSC STATUS SUCCESS) return -105;
}
// Übertragungs-Kanal für dynamische Messung 2 einrichten
result = MSC SetupExtendedDynamicChannel(pDevice, opcRDM2, 7,
1, NULL);
if (result != MSC STATUS SUCCESS) return -204;
// 7 Puffer mit jeweils 5000 * 4 Bytes = 20000 Bytes für die
Messwerte der
// zweiten dynamischen Messung allokieren und der DLL zuweisen
for (i = 0; i < 7; i++) {
  bufDyn2[i] = malloc(20000);
  result = MSC AttachSubChannelBuffer(pDevice, opcRDM2, i,
20000, &bufDyn2[i]);
```

```
if (result != MSC STATUS SUCCESS) return -205;
}
// Trigger 1 aktivieren. Damit wird die erste dynamische
Messung gestartet.
ansiString = "#1#";
WriteCommandStr(opcAT, ansiString);
if (ansiString != "#0#") return -106; // Abbruch aufgrund eines
Fehlers
// Trigger 2 aktivieren. Damit wird die zweite dynamische
Messung gestartet.
ansiString = "#2#'';
WriteCommandStr(opcAT, ansiString);
if (ansiString != "#0#") return -206; // Abbruch aufgrund eines
Fehlers
// Ende der dynamischen Messung abwarten
do {
  result = MSC GetPosition(pDevice, opcRDM1, &nMesswerteDyn1);
  if (result != MSC STATUS SUCCESS) return -107;
  result = MSC GetPosition(pDevice, opcRDM2, &nMesswerteDyn2);
  if (result != MSC STATUS SUCCESS) return -207;
  Sleep(50); // 50 ms Pause als Beispiel
} while ( (nMesswerteDyn1 < 10000) && (nMesswerteDyn2 <
5000));
// Trigger 1 de-aktivieren
ansiString = "#1#";
WriteCommandStr(opcIT, ansiString);
// Trigger 2 de-aktivieren
ansiString = "#2#'';
WriteCommandStr(opcIT, ansiString);
// Die Messwerte stehen nun zur Verfügung und können
ausgewertet werden
```

Anmerkungen

- In diesem Beispiel werden die beiden dynamischen Messungen gleichzeitig gestartet. Dies könnte auch unabhängig voneinander erfolgen.
- Die beiden zeitgesteuerten Messungen werden unterschiedlich beendet: einmal über die Zeit, einmal über die Anzahl der Messwerte. Bei der zeitgesteuerten Messung sind diese beiden Möglichkeiten gleichwertig. In der Praxis würde man für beide Messungen dieselbe Möglichkeit anwenden.
- Es wird in der do-while Schleife gewartet, bis beide dynamischen Messungen beendet sind. Erst dann wird mit der Messwert-Auswertung begonnen.

Die erste dynamische Messung ist aber viel früher fertig. Deshalb könnte mit der Auswertung auch schon früher begonnen werden.

 Der Mess-Kanal T2 wird in beiden dynamischen Messungen verwendet. Dies ist kein Problem, da die Messwert-Aufzeichnung unabhängig voneinander ist.

8.10 Bit I/O

Die Übertragung der Bit I/O – Daten läuft ähnlich ab, wie die statische Messung. Folgende Abbildung zeigt den Ablauf, um den Bit I/O – Datenaustausch zu starten:

Ablauf "Bit I/O - Datenaustausch starten"

 Die Funktion MSC_SetupStaticChannel startet in Verbindung mit dem Opcode opcBIO (0x42) den kontinuierlichen Austausch der Bit I/O – Daten durch die MscDll.

Der Funktion müssen dazu zwei Puffer übergeben werden:

- Im Empfangspuffer legt die MscDll die aktuellen Ausgangs-Daten, gefolgt von den empfangenen Eingangs-Daten ab.
- Aus dem Sendepuffer liest die MscDll die Ausgangs-Daten, die zum Irinos-System gesendet werden sollen.

- Nach Aufruf der Funktion MSC_SetNotificationMessage (alternativ MSC_SetNotificationEvent oder MSC_SetNotificationCallback) in Verbindung mit dem Opcode opcBIO (0x42) benachrichtigt die MscDll die Applikation jedes Mal, wenn Bit I/O – Eingangsdaten eingetroffen sind. Die Applikation kann dann selbst entscheiden, ob sie diese aus dem Puffer ausliest oder ignoriert. Die Verwendung von Benachrichtigungen ist empfohlen, jedoch nicht zwingend erforderlich.
- Die empfangenen Bit I/O-Daten werden zunächst in einem internen Puffer der MscDll vorgehalten. Um die Bit I/O-Daten in den Puffer der Applikation zu kopieren, muss die Funktion MSC_ReadStatic in Verbindung mit dem Opcode opcBIO (0x42) aufgerufen werden (siehe folgende Abbildung). Dieser Vorgang muss nach jedem Eintreffen neuer Bit I/O-Daten ausgeführt werden.

kopieren"

Neue Ausgangsdaten übernehmen

Ein wesentlicher Unterschied zur Abfrage der statischen Messwerte ist, dass nicht nur Daten vom Irinos-System abgerufen werden (Eingänge), sondern auch zum Irinos-System geschrieben werden (Ausgänge). Neue Ausgangs-Daten können jederzeit in den Sendepuffer geschrieben werden. Nach jeder Änderung muss die Funktion MSC_RefreshChannel in Verbindung mit dem Opcode opcBIO (0x42) aufgerufen werden, damit die MscDll die geänderten Daten übernimmt:

Ablauf "Bit I/O Ausgangsdaten aktualisieren"

Bit-Zuordnung

Die Anzahl der digitalen Ein- bzw. Ausgänge wird je Irinos-Box immer auf ein Vielfaches von 8 Bit aufgerundet. Beispiele:

- Eine Irinos-Box hat 2 digitale Eingänge. Es werden 6 "virtuelle" digitale Eingänge hinzuaddiert, so dass es insgesamt 8 Bits sind. Der Zustand der virtuellen Eingänge ist immer low.
- $_{\odot}$ Eine Irinos-Box hat je 68 digitale Ein- und Ausgänge. Es werden jeweils 4 "virtuelle" digitale Ein- / Ausgänge hinzuaddiert, so dass es insgesamt jeweils 72 Bits.

Die Reihenfolge der Bits entspricht der Reihenfolge der Box-Nummerierung. Folgende Tabellen verdeutlichen dies anhand zweier Beispiele:

Вох-Тур	Anzahl digitale Eingänge	Eingangs- Bits	Anzahl digitale Ausgänge	Ausgangs- Bits
IR-MASTER	68	1 68 [69 72 -> entfällt]	68	1 68 [69 72 -> entfällt]
IR-TFV	0	-	0	-
IR-INC	0	-	0	-
IR-DIO-16- 16	16	73 80	16	73 80
IR-DIO-16- 16	16	81 96	16	81 96

Вох-Тур	Anzahl digitale Eingänge	Eingangs- Bits	Anzahl digitale Ausgänge	Ausgangs- Bits
IR-TFV (integrierter Master)	2	1 2 [3 8 -> entfällt]	0	-
IR-TFV	0	-	0	-
IR-DIO-16- 16	16	9 24	16	1 16
IR-INC	0	-	0	-
IR-HMI1*	40	25 64	40	17 56

*Die Beschreibung der Bits der Bedienbox IR-HMI1 finden Sie bei der

<u>Beschreibung der Bedienbox</u>^{D64}.

Update-Rate

Die Update-Rate der Bit I/Os ist identisch mit der <u>Update-Rate der</u> statischen Messung^D¹⁴⁰.

Ausgenommen hiervon sind die digitalen Ein- / Ausgänge, die über den IO-Bus an der Irinos-Box IR-MASTER angeschlossen sind. Diese werden intern ca. 30 mal pro Sekunde aktualisiert.

Beachten Sie generell beim Austausch von Bit I/Os:

Der Bit I/O – Datenaustausch erfolgt nicht in Echtzeit. Es darf daher niemals in Verbindung mit einem Timer der Zustand eines Bits ausgewertet werden.

Verwenden Sie immer ein Handshake-Verfahren für den Austausch von Zustandsinformationen.

Sende-/Empfangspuffer

Die Größe des Empfangs- bzw. Sendepuffers richtet sich nach der Anzahl der Ein- / Ausgangsbits, die ausgetauscht werden müssen. Es gilt dabei die Grundregel, dass immer gleich viele Eingangs-Bits eingelesen werden, wie Ausgangs-Bits geschrieben werden. Wenn also z.B. 64 Ausgangs-Bits geschrieben werden, dann werden auch 64 Eingangs-Bits eingelesen.

Wenn z.B. 128 Ausgangs-Bits geschrieben werden, dann werden auch 128 Eingangs-Bits eingelesen.

Für die meisten Systeme sind jeweils 128 Bits = 16 Bytes ausreichend. Der Sendepuffer muss dann 16 Bytes groß sein. Im Empfangspuffer werden zunächst die digitalen Ausgänge zurückgespiegelt. Erst danach kommen die digitalen Eingänge. Deshalb muss der Empfangspuffer immer doppelt so groß sein, wie der Sendepuffer. Bei 128 Bits muss der Empfangspuffer also 32 Bytes groß sein. Siehe dazu auch folgende Abbildung:

Bit I/O Sende- und Empfangspuffer (Beispiel für je 128 Bits)

8.11 Fehler und Diagnose-Management

Das Irinos-System hat verschiedene integrierte Diagnose-Mechanismen. Über die MscDll können die Betriebszustände abgefragt werden. Dazu wird zwischen zwei Kategorien unterschieden:

- o Der Zustand der einzelnen Mess-Kanäle.
- \circ Der Betriebszustand der einzelnen Irinos-Boxen.

Beide Kategorien können über die MscDll ausgelesen werden.

8.11.1 Fehler der Mess-Eingänge erkennen / Hardware-Status abfragen Messwert-Manipulation

Das Irinos-System hat eine integrierte Messwert-Manipulation, wenn an einem Mess-Eingang ein Fehler festgestellt wurde, der eine Nutzbarkeit des Messwertes ausschließt. Statt des Messwertes wird dann solange ein Default-Wert geliefert, wie der Fehler ansteht. Diese Funktion ist abhängig vom Eingangs-Typ.

Sie ist insbesonders dann sehr nützlich, wenn die Applikation eine Taster-Überwachung durchführt. Eine Taster-Überwachung kann beispielsweise derart implementiert sein, dass ein Messtaster zwischen zwei Messungen um mindestens den Weg x ausgelenkt werden muss. Ist dies nicht der Fall, gilt die Messung als fehlgeschlagen.

Die Messwert-Manipulation wird immer durchgeführt, wenn die Master-Box keine Messwert-Daten von den Slave-Boxen erhält, also wenn ein Kommunikationsfehler vorliegt. In der Regel ist die Ursache hierfür eine defekte oder unzureichende ILink-Verkabelung (Kabel gebrochen, Stecker nicht korrekt fixiert, ...).

Darüber hinaus ist es vom jeweiligen Eingangs-Typ abhängig, wann eine Messwert-Manipulation durchgeführt wird:

Eingangs- Typ	Default- Wert im Fehlerfall	Bedingung für Messwert- Manipulation	Keine Messwert- Manipulation bei
IR-TFV Induktiver Messtaster	0x00007FFF = 32767	 Oszillator- Kurzschluss ILink- Kommunikation sfehler 	
IR-AIN / IR- MASTER Analogeingan g ± 10V	0x00007FFF = 32767	 Überlast der Referenzspann ung ILink- Kommunikation sfehler 	 Überlast des 24V-Ausgangs an den Analog- Ausgängen (zur Versorgung von Analog- Sensoren)
IR-INC Inkrementalg eber	0x7FFFFFFF = 2147483647	∘ ILink- Kommunikation sfehler	∘ Inkrementalgeb er-Fehler

Hardware-Status

Darüber hinausgehend kann der Fehlerzustand der Mess-Eingänge auch über den "Hardware-Status" abgefragt werden: Über den Opcode opcRHS (0x38) wird für jeden Mess-Kanal ein Byte geliefert, in welchem die möglichen Fehlertypen bitweise codiert sind. Der Inhalt des Bytes ist kanal-abhängig.

Die Abfrage des Hardware-Status wird ins besonders für Inkrementalgeber-Eingänge empfohlen, da hier keine Messwert-Manipulation im Fehlerfall durchgeführt wird. Desweiteren ist aus dem Hardware-Status auch auslesbar, ob die Referenzmarke des Inkrementalgebers überfahren wurde. Diese Information wird für viele Messungen benötigt.

Zur Abfrage des Hardware-Status gibt es zwei Möglichkeiten:

1. Er kann wie die <u>statischen Messwerte</u>^{D¹⁴⁷} oder die <u>Bit I/Os</u>^{D172} über einen statischen Übertragungskanal kontinuierlich durch die MscDll aktualisiert werden.

auslesen"

2. Er kann manuell durch die Applikation über MSC_WriteCommand ausgelesen werden, z.B. immer am Ende einer durchgeführten Messung.

8.11.2 Ereignis-Status der Irinos-Boxen auslesen / zurücksetzen

Ereignis-Status auslesen

Jede Irinos-Box hat einen zentralen Ereignis-Handler. Sobald an einer Stelle in der Firmware ein besonderes <u>Ereignis</u>^D¹⁰⁰ auftritt, wird dieses an den Ereignis-Handler gemeldet. Im Normalbetrieb sollte kein Ereignis auftreten.

Das zuletzt gemeldete Ereignis wird als "aktives Ereignis" einer Irinos-Box hinterlegt. Dieses kann über den Opcode opcREv (0x39) abgefragt werden. Die Abfrage erfolgt über die Funktion MSC_WriteCommand:

Ereignis-Status zurücksetzen

Durch zurücksetzen / löschen eines Ereignisses, wird dieses nicht mehr über den Ereignis-Status ausgegeben. Eine Anzeige auf der Status-LED¹⁴⁷ bzw. der <u>7-Segment - Anzeige¹⁴⁸</u> wird beendet. Bitte beachten Sie:

Das Löschen eines Ereignisses behebt nicht seine Ursache! Je nach Ereignis kann es nach dem Löschen gleich wieder auftreten.

Das Löschen eines Ereignisses erfolgt über den Opcode opcClrEv (0x3E) in Verbindung mit der Funktion MSC WriteCommand:

Ablauf "Ereignis-Status" löschen

8.11.3 Absolut-Zeit für Diagnose-Speicher setzen

Der in jeder Irinos-Box integrierte <u>Diagnose-Speicher</u>^D²² ist ein Hilfsmittel zur Problemanalyse. Gerade bei nur sporadisch wiederkehrenden Problemen ist es sehr nützlich, wenn genaue Informationen darüber vorliegen, wann ein Ereignis aufgetreten ist. Dazu wird mit jedem Eintrag im Diagnose-Speicher die <u>ILink-Zeit</u>^{D28} abgelegt.

Als zusätzliche Information kann jeder Diagnose-Eintrag auch mit dem Datum sowie der Uhrzeit versehen werden. Da das Irinos-System keine integrierte Echtzeit-Uhr hat, muss die Applikation nach dem Start des Irinos-Systems das aktuelle Datum sowie die aktuelle Uhrzeit zum Irinos-System senden. Dies erfolgt über die Funktion MSC WriteCommand in Verbindung mit dem Opcode opcSAbsT (0x3A).

Bei Dauerbetrieb wird empfohlen, diesen Vorgang einmal täglich zu wiederholen, um Ungenauigkeiten der internen Uhr auszugleichen.

8.12 System-Aufbau prüfen

Vom Irinos-System kann ein String abgefragt werden, der Anzahl der verwendeten Irinos-Boxen sowie deren Reihenfolge wiedergibt. Dazu werden die Bestell-Nummern der einzelnen Irinos-Boxen in Reihenfolge ihrer Nummerierung ausgegeben.

Es wird empfohlen, diesen String nach jedem Verbindungsaufbau abzufragen und mit einem Soll-String zu vergleichen. Der Soll-String muss dazu in der Applikation / Messrechner-Software hinterlegt sein, z.B. in deren Ini-Datei. Durch den Vergleich wird sichergestellt, dass das Irinos-System den Zustand hat, der für die Messaufgabe benötigt wird. Wurde beispielsweise eine Irinos-Box dem System entnommen, während es nicht benötigt wurde, so wird dies beim Start der Messrechner-Software durch den Vergleich erkannt.

Der Ablauf ist in folgender Abbildung dargestellt:

Mit der Funktion MSC_WriteCommand in Verbindung mit dem Opcode opcRSS (0x05) wird der System-String ausgelesen.

Der System-String kann auch manuell über die Inventarliste des Irinos-Tools ausgelesen werden.

Alternativ oder zusätzlich ist es auch möglich eine <u>umfangreiche</u> <u>Übersicht</u>^D¹⁰⁰ über das System auszulesen. Dies ist allerdings deutlich komplexer.

8.13 Tipps und Tricks

8.13.1 System-Informationen auslesen

Das Irinos-System bietet die Möglichkeit, die Anzahl der im System vorhandenen Irinos-Boxen sowie deren Typ auszulesen. Diese können dann beispielsweise in einer Übersicht der Applikation / Messrechner-Software dargestellt werden.

Das Auslesen der Box-Anzahl erfolgt über den Opcode opcRIV (0x01). Das Auslesen der Box-Informationen erfolgt über den Opcode opcRMI (0x03). Für beide Opcodes wird die Funktion MSC WriteCommand verwendet:

8.13.2 Anzahl der statischen Mess-Kanäle einschränken

Sofern die statische Messung aktiv ist, werden die statischen Messwerte aller Messkanäle mit jedem Telegramm vom Irinos-System zur MscDll übertragen. Bei Systemen mit vielen Messkanälen führt dies dazu, dass die Übertragungsbandbreite für die dynamischen Messwerte gering ist. Die Übertragung der dynamischen Messwerte kann deshalb sehr lange dauern. In der Regel werden aber nie alle statischen Messkanäle gleichzeitig benötigt. Deshalb ist es ab ca. 64 Mess-Kanälen empfehlenswert, die Anzahl der zu übertragenden statischen Messkanäle einzuschränken.

Dazu sind zwei Schritte notwendig:

- a) Die tatsächlich benötigten statischen Mess-Kanäle werden in einer Kanalliste definiert. Dies geschieht über die Funktion MSC_WriteCommand in Verbindung mit dem Opcode opcWCL (0x22). Achten Sie dabei darauf, dass eine Kanalliste verwendet wird, die nicht für die dynamische Messung benötigt wird, z.B. Kanalliste 10.
- b) Die Kanalliste muss über die Funktion MSC_WriteCommand in Verbindung mit dem Opcode opcACL (0x24) aktiviert werden.

Aquivalent zu den Mess-Kanälen wird nun der Hardware-Status

(Opcode opcRHS) auch nur noch für diejenigen Mess-Kanäle übertragen, die in der Kanalliste enthalten sind.

Ablauf "auzulesende statische Mess-Kanäle auswhählen"

Bei Bedarf können mehrere Gruppen von Mess-Kanälen gebildet werden. Jede Gruppe wird dazu in einer eigenen Kanalliste abgelegt. Zur Umschaltung der Gruppen während des Betriebes erfolgt über die Auswahl der entsprechenden Kanalliste. Durch Auswahl der Kanalliste 0 werden wieder alle Mess-Kanäle für die statische Messung aktiviert.

8.14 Lizenzierung

Bei Verwendung in Verbindung mit dem Irinos-System fallen keine Lizenzkosten für die MscDll an. Sie darf auf beliebig viele Rechner kopiert und in Verbindung mit eigener (Messrechner-)Software an Dritte ausgeliefert werden.

Wenn die MscDll mit einer anderen Hardware als dem Irinos-System verwendet wird, fallen Lizenzkosten an. Die Lizenzierung erfolgt ausschließlich direkt durch Messtechnik Sachs GmbH.

Die ausführlichen <u>Lizenzbedingungen^{D9}</u> entnehmen Sie den rechtlichen Hinweisen.

Diagnose und "Erste Hilfe"

9 Diagnose und "Erste Hilfe"

9.1 Allgemeine Vorgehensweise

Voraussetzung für eine effiziente und zuverlässige Diagnose ist (bei jedem technischen System) eine systematische Vorgehensweise. Aus einer Vielzahl von verfügbaren Informationen mit durchschnittlich geringer Informations-Relevanz, müssen diejenigen herausgefiltert werden, welche für die Lösung eines Problems eine hohe Relevanz haben:

Informations-Filterung bei der Diagnose

Gehen Sie in diesem Prozess wie folgt vor:

I. Problem-Erfassung

Beschreiben Sie das Problem möglichst genau. Es kann sehr hilfreich sein, dies schriftlich zu tun. Dies gilt ins besonders dann, wenn es möglicherweise mehrere Probleme gibt von denen nicht klar ist, ob sie miteinander zu tun haben. Formulieren Sie gegebenenfalls mehrere unabhängige Problembeschreibungen.

II. Informations-Gewinnung

Halten Sie die Situation vor und nach dem Auftreten des

Problems fest. Folgende Fragestellungen können dabei helfen:

- Was ist Besonderes vor dem Auftreten des Problems geschehen? Wurde eine bestimmte Aktion ausgeführt?
- Wurde das System vor dem Auftreten des Problems verändert?
- Wie ist der Zustand nach dem Auftreten des Problems? Sind irgendwelche Auffälligkeiten erkennbar? Wie ist der Zustand der Status- und Fehler-Anzeigen?
- **III.** Lesen Sie verfügbare Diagnose-Informationen aus. Versuchen Sie herauszufinden, ob der Fehler einmalig oder mehrfach aufgetreten ist.

IV. Informations-Bewertung

Sortieren Sie die aus den Schritten II und III gewonnenen Informationen in folgende Kategorien:

- Nicht relevant
- Möglicherweise relevant
- Sehr wahrscheinlich relevant

V. Informations-Verifizierung

Versuchen Sie das Problem anhand der Kategorie "Sehr wahrscheinlich relevant" gezielt nachzustellen. Gehen Sie dabei schrittweise vor, d.h. konzentrieren Sie sich dabei der Reihe nach immer nur auf eine mögliche Ursache. Wenn Sie bis hierhin noch nicht erfolgreich waren: versuchen Sie nun das Problem anhand der Kategorie "Möglicherweise relevant" nachzustellen.

Erst wenn ein Problem nachgestellt werden kann und die Ursache bekannt ist, kann eine Lösung gefunden werden.

Tipps

• Differenzierung

Wenn es mehrere Probleme gibt, so wird häufig nicht zwischen diesen unterschieden. Betrachten Sie immer nur ein Problem. Eine gleichzeitige Analyse von mehreren Problemen ist nicht zielführend.

Ruhe bewahren

Ein Problem soll immer möglichst schnell beseitigt werden. Deshalb

herrscht auch immer ein hoher Zeitdruck. Dieser beschleunigt jedoch nicht die Lösungsfindung.

Bewahren Sie trotz aller externen Einflüsse Ruhe und gehen Sie systematisch vor.

o Beobachten

Gerade dann, wenn es schwer fällt ein Problem nachzustellen, hilft es häufig das Gesamtsystem in Ruhe zu beobachten. Manchmal liefert eine Leuchtdiode oder ein seltsames Geräusch mehr Informationen, als das beste Messgerät.

Vereinfachung

Versuchen Sie gerade bei komplexen Systemen oder Applikationen einen vereinfachten Zustand zu schaffen, in welchem ein Problem nicht mehr auftritt. Erhöhen Sie dann schrittweise die Komplexität, bis das Problem wieder auftritt.

9.2 Diagnose-Ereignisse

Jede Irinos-Box hat einen zentralen Ereignis-Handler. Sobald an einer Stelle in der Firmware ein besonderes Ereignis auftritt, wird dieses an den Ereignis-Handler gemeldet. Je nach Konfiguration wird das Ereignis

o dem Anwender bzw. der Applikation weitergemeldet und/oder

 \circ in den <u>Diagnose-Speicher</u>^{D_{202}} eingetragen.

Im Normalbetrieb sollte kein Ereignis auftreten.

Um die Ereignisse auseinanderhalten zu können, gibt es verschiedenen Ereignis-Typen, die anhand der Ereignis-Nummer unterschieden werden.

Bei entsprechender Konfiguration wird das Auftreten eines Ereignisses in der <u>7-Segment-Anzeige</u>^{D48} bzw. der <u>Status-LED</u>^{D47} der Irinos-Box angezeigt. Das Ereignis kann auch über die MscDll <u>ausgelesen</u>^{D177} werden.

Das Irinos-System hat eine sehr ausführliche Fehlerbehandlungs-Strategie um einen zuverlässigen Betrieb zu gewährleisten. Die meisten Ereignisse, die bei einem Fehler ausgelöst werden, sind hypothetischer Natur. Diese sind deshalb nicht dokumentiert. Wenden Sie sich an den Support, wenn so ein Ereignis auftritt.

Im Folgenden sind diejenigen Ereignisse aufgelistet, die für die Praxis

relevant sind:

Ereignis 1: System / "System"	
Beschreibung	Allgemeines System-Ereignis
Тур	Information
Auslöser	 System wurde gestartet Diagnose-Speicher^{D™} wurde gelöscht
Weitermeldung an Anwender/Applikation	Nein, nicht aktivierbar
Eintragung in Diagnose-Speicher	Ja, nicht änderbar

Ereignis 4: MscDll – Kommunikation / "MscDll communication error"	
Beschreibung	Bei der Kommunikation zwischen dem Irinos-System und der MscDll wurde ein Problem festgestellt.
Тур	Fehler
Auslöser / Behebung	 Ein ungültiger Opcode wurde verwendet (Hilfstext im Diagnose-Speicher: "Invalid opcode in RX packet") -> Verwenden Sie nur gültige Opcodes Die Sende- oder Empfangs- Puffergröße ist zu klein (Hilfstext im Diagnose-Speicher: "Too much TX data") -> Verwenden für die Konfigurationsdatei Msc.cfg die

	im Referenzhandbuch angegebene Port-Nummer und Puffer-Größen.
Weitermeldung an Anwender/Applikation	Ja, nicht de-aktivierbar
Eintragung in Diagnose-Speicher	Ja, änderbar

Ereignis 12: Box-Adressierung und -Terminierung / "ILink module detection error"	
Beschreibung	Beim Start des Irinos-Systems ist ein Problem bei der Erkennung oder Terminierung der Slave- Box(en) aufgetreten.
Тур	Fehler
Auslöser / Behebung	 Fehlerhafte ILink-Verkabelung oder defektes ILink-Kabel -> Überprüfen Sie die <u>ILink-</u> <u>Verkabelung</u>^{D™} Mehrere Master-Boxen in einem System -> Es ist nur eine <u>Master-Box</u>^{D28} je Irinos-System zulässig Irinos-Box defekt -> Tauschen Sie die Irinos-Box
Hinweis	Bei Irinos-Systemen mit mehreren Slave-Boxen: Testen Sie das System zunächst mit 1, dann mit 2, dann mit 3, usw. Slave-Boxen um herauszufinden, an welcher Stelle das Problem auftritt.

Г

Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar
Eintragung in Diagnose-Speicher	Ja, änderbar

Ereignis 13: ILink-Kommunikation / "ILink communication error"	
Beschreibung	Die Kommunikation über die ILink- Schnittstelle ist gestört.
Тур	Fehler
Auslöser / Behebung	 Fehlerhafte ILink-Verkabelung oder defektes ILink-Kabel -> Überprüfen Sie die <u>ILink-</u> <u>Verkabelung</u>¹²⁰ Unzureichende Spannungsversorgung (z.B. kurzzeitige Spannungseinbrüche) -> Verwenden Sie ein <u>ausreichend dimensioniertes</u> <u>Netzteil</u>¹²¹⁵.
Hinweis	Die ILink-Kommunikation hat eine integrierte Datenprüfung sowie eine Paket-Wiederholung im Fehlerfall. Wenn die Paket- Wiederholung mehrfach fehlschlägt, wird dieses Ereignis ausgelöst.
Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar
Eintragung in Diagnose-Speicher	Ja, änderbar

193

Ereignis 15: Überlast Sinus-	Ereignis 15: Überlast Sinus-Oszillator / "Sine-oscillator"	
Beschreibung	Der Sinus-Oszillator für die <u>induktiven Messtaster</u> ^{D₅2} wurde überlastet (Kurzschluss).	
Тур	Fehler	
Auslöser / Bebehung	 Defekter Messtaster -> Tauschen Sie den defekten Messtaster. 	
Ausioser / Benebung	 Messtaster faisch angeschlossen, z.B. bei Verwendung einer Verlängerungs-Leitung -> Überprüfen Sie die Pin- Belegung 	
	Es wird zyklisch geprüft, ob der Oszillator-Kurzschluss noch vorhanden ist. Sobald er nicht mehr vorhanden ist, wird das Ereignis automatisch gelöscht.	
Hinweis	→Entfernen Sie zur Ursachensuche die Messtaster nacheinander. Warten Sie nachdem Entfernen eines Messtasters 10s. Sobald das Ereignis nicht mehr aktiv ist (erkennbar an der <u>7-Segement –</u> <u>Anzeige^{D48}</u> bzw. der <u>Status-LED</u> ^{D47}), wurde der defekte Messtaster entfernt.	
Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar	
Eintragung in Diagnose-Speicher	Ja, änderbar	

Ereignis 21: Dynamische Messung / "Invalid dynamic measurement config"

Beschreibung	Beim Start der dynamischen Messung wurde ein Konfigurations-Fehler festgestellt.
Тур	Fehler
Auslöser / Behebung	 O Ungültiger Trigger-Abstand für die zeitgesteuerte dynamische Messung. -> Der Trigger-Abstand muss ein Vielfaches der Abtastperiode^{D™} der beteiligten Irinos-Boxen sein.
Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar
Eintragung in Diagnose-Speicher	Ja, änderbar

Ereignis 24: Inkrementalgeber - Spannungsversorgung / "Inc. encoder power error"	
Beschreibung	Die Spannungsversorgung eines oder mehrerer <u>Inkrementalgeber- Kanäle^{D58}</u> wurde aufgrund von Überlast / Kurzschluss abgeschaltet.
Тур	Fehler
Auslöser / Behebung	 ○ Defekt eines Inkrementalgebers oder eines Inkrementalgeber- Kabels > Defekten Inkrementalgeber tauschen. ○ Falscher Anschluss eines Inkrementalgebers. > Anschlussbelegung^D[™] prüfen. ○ Zu hohe Leistungsaufnahme der Inkrementalgeber

	-> Zulässige Anschlusswerte beachten.
Hinweise	 Bei einer Überlast / Kurzschluss an einem einzelnen Inkrementalgeber-Eingang wird nur der Eingang selbst deaktiviert. Alle anderen Eingänge sind weiterhin funktionsfähig. Sobald die Überlast bzw. der Kurzschluss beseitigt wurde, wird das Ereignis automatisch gelöscht. Bei einer Gesamt-Überlast wird die Spannungsversorgung für die Inkrementalgeber-Eingänge dauerhaft abgeschaltet. Erst nach einem Neustart des Irinos- Systems sind die Inkrementalgeber-Eingänge wieder nutzbar.
Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar
Eintragung in Diagnose-Speicher	Ja, änderbar

Ereignis 25: Inkrementalgeber – Signal(e) / "Inc. encoder application error"	
Beschreibung	Die Eingangssignale eines <u>Inkrementalgeber-Eingangs^{D58}</u> waren / sind außerhalb des zulässigen Bereichs.
Тур	Fehler
Auslöser / Behebung	 Inkrementalgeber-Stecker wurde während des Betriebs abgezogen.

	 ○ Inkrementalgeber- Steckverbinder sitzt lose (Wackelkontakt). -> <u>Steckverbinder</u> <u>ordnungsgemäß verriegeln</u>^{D124}
	 Zu hohe <u>Eingangsfrequenz</u>^{D²¹²} des Inkrementalgebers > Bewegung des Inkrementalgebers verlangsamen / Mechanischen "Schlag" vermeiden
	 Zu lange Inkrementalgeber – Leitung Kurze Leitung verwenden
	 ○ Falsche Anschlussbelegung des Inkrementalgebers -> <u>Anschlussbelegung</u>^{D™} prüfen
	 Ausgangssignale des Inkrementalgebers <u>außerhalb der</u> <u>Spezifikation</u>^{D213} Signale mit dem Irinos-Tool prüfen
	 Die Inkrementalgeber-Signale können mit dem Irinos-Tool geprüft werden (nur 1Vss).
Hinweise	 Beachten Sie die <u>Applikationshinweise</u>^{D²¹²} für Inkrementalgeber.
	 Ein Inkrementalgeber-Eingang kann über den Opcode opcSP zurückgesetzt werden (siehe Referenzhandbuch).
Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar
Eintragung in Diagnose-Speicher	Ja, änderbar

Γ

Ereignis 27: Firmware-Update fehlgeschlagen / "Firmware update error"		
Beschreibung	Bei der Ausführung des Firmware- Updates ist ein Fehler aufgetreten.	
Тур	Fehler	
Auslöser / Behebung	 Falsche Firmware-Datei Verwenden Sie eine gültige Firmware-Datei Übertragungsfehler Wiederholen Sie das Firmware-Update 	
Hinweise	Nach einem fehlgeschlagenen Firmware-Update ist weiterhin die "alte" Firmware-Version aktiv.	
Weitermeldung an Anwender/Applikation	Ja, nicht de-aktivierbar	
Eintragung in Diagnose-Speicher	Ja, nicht änderbar	

Ereignis 28: Firmware-Update erfolgreich / "Firmware update successful"		
Beschreibung	Ein Firmware-Update wurde erfolgreich durchgeführt.	
Тур	Information	
Weitermeldung an Anwender/Applikation	Nein, nicht aktivierbar	
Eintragung in Diagnose-Speicher	Ja, nicht änderbar	

Ereignis 33: Referenzspannung für Analogeingänge überlastet / "Reference voltage error"

Beschreibung	Die Referenzspannung der Analogeingänge wurde überlastet / kurz geschlossen.
Тур	Fehler
Auslöser / Behebung	 Zu hohe Belastung der Referenzspannung Maximale Belastung auf den spezifizierten Wert verringern Sensor / Sensorleitung defekt Sensor und Sensorleitung prüfen Sensor falsch angeschlossen Anschlussbelegung^{D95} prüfen
Hinweise	Nachdem die Ursache behoben wurde, muss das Irinos-System neu gestartet werden.
Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar
Eintragung in Diagnose-Speicher	Ja, änderbar

Ereignis 34: 24V – Versorgung für digitale Ein-/Ausgänge bzw. die Analog-Eingänge überlastet / "24V output error"		
Beschreibung	Die 24V – Versorgung für die digitalen Ein-/Ausgänge bzw. die Analog-Eingänge wurde überlastet.	
Тур	Fehler	

Auslöser / Behebung	 Zu hohe Belastung der 24V - Versorgung Maximale Belastung auf den spezifizierten Wert verringern Sensor / Aktor / Leitung defekt Sensoren, Aktoren und Leitungen prüfen Sensor / Aktor falsch angeschlossen Anschlussbelegung prüfen
Hinweise	Nachdem die Ursache behoben wurde, wird der 24V-Ausgang automatisch freigegeben und das Ereignis gelöscht.
Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar
Eintragung in Diagnose-Speicher	Ja, änderbar

Ereignis 35: IO-Bus – Fehler / "IoBus communication error"		
Beschreibung	Die Kommunikation zu einer angeschlossenen I/O-Box ist dauerhaft gestört.	
Тур	Fehler	
Auslöser / Behebung	 I/O-Box wurde während des Betriebs ausgeschaltet Leitung zur I/O-Box wurde während des Betriebs abgezogen Leitung zur I/O-Box defekt -> Leitung tauschen. 	

	 Eine oder mehrere I/O-Boxen wurden nicht korrekt terminiert. Terminierung prüfen.
Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar
Eintragung in Diagnose-Speicher	Ja, änderbar

Ereignis 36: Überlast der digitalen Ausgänge / "Digital I/O error"		
Beschreibung	Der Ausgangstreiber für die digitalen Ausgänge wurde überlastet (thermische Überlast).	
Тур	Fehler	
Auslöser / Behebung	 Zu hohe Dauerbelastung der digitalen Ausgänge. Maximale Ausgangslast an die Spezifikation anpassen. 	
Hinweise	Sobald der Ausgangstreiber abgekühlt ist, werden die Ausgänge automatisch wieder freigegeben und das Ereignis gelöscht.	
Weitermeldung an Anwender/Applikation	Ja, de-aktivierbar	
Eintragung in Diagnose-Speicher	Ja, änderbar	

9.3 Diagnose-Speicher

Jede Irinos-Box hat einen integrierten, nicht-flüchtigen Diagnose-Speicher, in welchen die aufgetretenen Ereignisse eingetragen werden (sofern das Speichern für das jeweilige Ereignis aktiviert ist). Er kann über den <u>Webserver</u>^{D 137} sowie über das Irinos-Tool ausgelesen werden.

Der Diagnose-Speicher ist damit ein wichtiges Hilfsmittel, um auftretende Probleme nachvollziehen und deren Ursache eingrenzen zu können. Dies gilt ins besonders dann, wenn ein Fehler sporadisch auftritt.

Je Irinos-Box können mindestens 32 Einträge im Diagnose-Speicher abgelegt werden. Sobald er voll ist, werden die ältesten Einträge automatisch gelöscht und damit Platz für neue Einträge geschaffen.

Ein Diagnose-Eintrag enthält neben dem eigentlichen Diagnose-Ereignis einige Zusatz-Informationen, die bei der Ursachensuche behilflich sein können. Dazu gehören die System-Zeit (<u>ILink-Zeit</u>^{D28}) und die Absolut-Zeit.

Die ILink-Zeit entspricht der Zeit seit Start des Irinos-Systems in μ s. Sie ist auf allen Irinos-Boxen eines Systems einheitlich.

Die Absolut-Zeit enthält das Datum sowie die Uhrzeit des Diagnose-Eintrags. Da das Irinos-System keine Echtzeit-Uhr enthält, ist die Absolut-Zeit beim Start des Systems immer 0. Sie sollte dann vom PC aus geschrieben werden. Dies geschieht <u>über die MscDll</u>^{D™}. Jeder nachfolgende Diagnose-Eintrag wird dann mit der Absolut-Zeit versehen.

Nach dem Einschalten wird in jeder Irinos-Box der Diagnose-Eintrag "System (1)" mit dem Hilfstext "System started" eingetragen. Damit ist nachvollziehbar, ob ein Ereignis vor oder nach dem letzten Einschalten des Irinos-Systems aufgetreten ist.

9.4 Erste Hilfe "Netzwerkverbindung"

➔ Die in diesem Kapitel beschriebene Vorgehensweise erhebt keinen Anspruch auf Vollständigkeit. Sie deckt vielmehr die typische erforderliche Vorgehensweise ab. Weitere Informationen zur Netzwerk-Verbindung entnehmen Sie dem Benutzerhandbuch des Irinos-Tools. Verbindungsprobleme zum Irinos-System liegen in der Regel an einer oder mehrerer der folgenden Ursachen:

- \circ Die <u>Netzwerk-Verkabelung</u>^{□™} ist fehlerhaft.
- Die Netzwerk-Konfiguration des PCs passt nicht zur Netzwerk-Konfiguration des Irinos-Systems.
- o Die Kommunikations-Einstellungen für die MscDll sind falsch.

Netzwerk-Verkabelung prüfen

 a) Prüfen Sie, ob die Netzwerk-Schnittstelle des Irinos-Systems mit der Netzwerk-Schnittstelle des PCs verbunden ist.
 Bei erfolgreicher elektrischer Verbindung leuchtet oder blinkt die "Link-LED" (IR-MASTER) bzw. die Ethernet-LED (integrierter Master). Fahren Sie mit dem nächsten Schritt erst fort, wenn dies der Fall ist.

Netzwerk-Konfiguration prüfen

 b) Starten Sie das Irinos-Tool. Dieses zeigt beim Start alle im Netzwerk gefundenen Irinos-Systeme an. Das von Ihnen verwendete Irinos-System sollte hier aufgelistet sein. Sie erkennen dies anhand der aufgelisteten MAC-Adresse. Diese muss mit der MAC-Adresse auf dem Typenschild der Master-Box übereinstimmen.

In der Liste wird auch die IP-Konfiguration des Irinos-Systems angezeigt.

c) Führen Sie den Verbindungsaufbau zum Irinos-System über das Irinos-Tool durch.

Fahren Sie mit dem nächsten Schritt fort, wenn der Verbindungsaufbau fehlschlägt. Fahren Sie ansonsten mit Schritt f) fort.

d) Öffnen Sie die Netzwerk-Konfiguration des Irinos-Systems durch einen Doppelklick auf die zugehörige Tabellenzeile im Irinos-Tool:

DHCP	DHCP Server	
Irinos IP-Adresse	192.168.3.99	
Irinos Subnetzmaske	255.255.255.0	
Default Gateway	0.0.0.0	
Irinos MAC-Adresse	A0-88-3E-E0-00-0A	
Netzwerkkarte	192.168.3.98	
Lokale Subnetzmaske	255.255.255.0	

Netzwerk-Konfiguration mit dem Irinos-Tool

e) Öffnen Sie die Windows Konfigurations-Einstellungen des Netzwerk-Adapters, an welchen das Irinos-System angeschlossen ist. Gehen Sie zu den Einstellungen zum "Internetprotokoll Version 4 (TCP/IPv4)".

Wenn am Irinos-System der DHCP-Server konfiguriert ist, dann muss die Option "IP-Adresse automatisch beziehen" ausgewählt sein (siehe Abbildung links).

Wenn das Irinos-System eine feste IP-Adresse hat, dann muss auch am PC eine feste IP-Adresse hinterlegt werden. Beide IP-Adressen müssen im selben Subnetzbereich liegen. In den meisten Fällen wird die Subnetzmaske 255.255.255.0 verwendet. Dann müssen die ersten drei Stellen der IP-Adressen übereinstimmen. Hat das Irinos-System z.B. die IP-Adresse 192.168.178.1, dann muss der PC eine IP-Adresse aus dem Bereich 192.168.178.2 bis 192.168.178.254 haben (siehe Abbildung rechts).

Ändern Sie die IP-Einstellungen unter Windows erforderlichenfalls.

Allgemein Alternative Konfiguration		Allgemein	
IP-Einstellungen können automatisc Netzwerk diese Funktion unterstütz den Netzwerkadministrator, um die beziehen.	h zugewiesen werden, wenn das t. Wenden Sie sich andernfalls an geeigneten IP-Einstellungen zu	IP-Einstellungen können automat Netzwerk diese Funktion untersti den Netzwerkadministrator, um d beziehen.	isch zugewiesen werden, wenn das itzt. Wenden Sie sich andernfalls an ie geeigneten IP-Einstellungen zu
P-Adresse automatisch bezieh	len	 IP-Adresse automatisch bez 	iehen
Folgende IP- <u>A</u> dresse verwend	en:	Folgende IP- <u>A</u> dresse verwe	nden:
IP-Adresse:	· · · · · · ·	IP-Adresse:	192 . 168 . 178 . 17
Sybnetzmaske:		Sybnetzmaske:	255.255.255.0
Standardgateway:		Standardgateway:	
DNS-Serveradresse automatis	ch beziehen	DNS-Serveradresse automa	tisch beziehen
Folgende DNS-Serveradresser	verwenden:	Folgende DNS-Serveradress	en verwenden:
Bevorzugter DNS-Server:	1	Bevorzugter DNS-Server:	
Alternativer DNS-Server:		Alternativer DNS-Server:	
Einstellungen beim Beenden ü	berprüfen	Einstellungen beim Beender	n überprüfen
	Erweitert		Erweitert
	OK Abbrechen		OK Abbrechen

IP-Konfiguration unter Windows

Kommunikations-Einstellungen übernehmen

 f) Das Irinos-Tool erzeugt beim Verbindungsaufbau automatisch die Konfigurations-Datei Msc.cfg. Diese liegt dann im gleichen Verzeichnis, wie das Irinos-Tool selbst.

Dieselbe Konfigurations-Datei wird auch von der Applikation (Messrechner-Software) benötigt. Sie muss sich dazu im gleichen Verzeichnis befinden, wie die MscDll.dll. Kopieren Sie die Msc.cfg aus dem Irinos-Tool – Verzeichnis in das Verzeichnis der Applikation. Eventuell muss dazu eine bereits bestehende Konfigurations-Datei überschrieben werden.

a) Starten Sie nun den Verbindungsaufbau über die Applikation. Dieser sollte nun erfolgreich sein.

Wartung, Pflege und Entsorgung

10 Wartung, Pflege und Entsorgung

10.1 Wartung

Das Irinos-System ist für den wartungsfreien Dauerbetrieb ausgelegt.

Es wird empfohlen in regelmäßigen Abständen die Befestigung aller Stecker zu prüfen, z.B. monatlich. Sie vermeiden dadurch einen Verschleiß der Steckverbinder. Zudem wird das mögliche Auftreten von Fehlerquellen vorbeugend verhindert.

10.2 Pflege

Vorsicht
Unbeabsichtigte Reaktion beim Reinigen des Irinos- Messsystem
Wenn das Irinos-Messsystem beim Reinigen eingeschaltet ist, können Bedienelemente unbeabsichtigt ausgelöst werden.
Das Irinos-Messsystem oder damit verbundene Komponenten können unbeabsichtigt reagieren. Personenschaden oder Maschinenschaden kann die kann die Folge sein.
Schalten Sie das Gerät vor der Reinigung aus.

Führen Sie bei intensiver Nutzung die in folgender Tabelle aufgelisteten Reinigungsarbeiten durch.

Bei besonders verschmutzter Umgebung kann eine häufigere Reinigung erforderlich sein. Im Gegenzug können die Reinigungsintervalle bei Gelegenheitsnutzung oder sauberer Umgebung verlängert werden.

Intervall	Reinigung
3 Monate	Reinigung der Steckverbinder- Oberfläche von Öl und Staub.
	Verwenden Sie zur Reinigung ein Papiertuch, das mit Spülmittelwasser befeuchtet wurde.
	Schalten Sie das Irinos-System erst wieder ein, wenn die Steckverbinder komplett trocken sind.
Monatlich	Reinigen Sie das Gehäuse mit einem Papiertuch, das mit Spülmittelwasser befeuchtet wurde.
	Verwenden Sie ein kratzfreies Tuch.

10.3 Entsorgung

Entsorgen Sie sowohl das Irinos-System als auch das Zubehör über die Elektronikschrott-Verwertung Ihres jeweiligen Landes. Entsorgen Sie es keinesfalls über den Hausmüll.

Applikationshinweise

11 Applikationshinweise

11.1 Inkrementalgeber 1Vss oder TTL / RS422

11.1.1 Referenzierung bei Absolutmessung

Inkrementalgeber sind keine Absolut-Messmittel. Um absolute Messwerte zu erhalten ist nach dem Einschalten sowie nach einem Signalfehler immer eine Referenzierung erforderlich. Die Irinos-Box IR-INC^{D_{58}} bietet folgende Möglichkeiten zur Referenzierung:

o Referenzierung über Referenzmarke

Der Zählwert wird beim Überschreiten der Referenzmarke auf 0 gesetzt.

Referenzierung per Software-Vorgabe:

Der Zählwert kann per Software jederzeit gesetzt werden. Es kann sowohl der Wert 0 als auch jeder beliebige andere Wert gesetzt werden.

In Verbindung mit der MscDll können beide Aktionen über den Opcode opcSP (0x35) ausgeführt werden.

Bitte beachten Sie, dass die Irinos-Box IR-INC nur die technische Möglichkeit zur Referenzierung bieten kann. Die Vorgehensweise zur Referenzierung des Messwertes hängt vom jeweiligen Messablauf ab. Dies muss daher bereits in der Planungsphase berücksichtigt werden. Berücksichtigen Sie dabei ins besonders auch die Vorgehensweise nach dem Auftreten eines Inkrementalgeber-Fehlers.

11.1.2 Eingangsfrequenz

Die Eingangsfrequenz der Inkrementalsignale (TTL / RS422) bzw. Teilungsperioden (1 Vss) ist begrenzt. Details dazu entnehmen Sie den technischen Daten der betreffenden Irinos-Box.

Bei den meisten Messvorgängen liegt die theoretische Eingangsfrequenz deutlich unterhalb des Grenzwertes. In der Praxis kann es jedoch durch ruckartige Bewegungen dazu kommen, dass diese überschritten wird. Beispiele hierfür sind:

• "Losreißen" aus dem Stillstand (Überwindung der Haftreibung)

• Mechanischer Schlag

o Ruckartige Bewegung durch mechanische Spannungen

Wir empfehlen, dies bereits bei der Mechanik-Konstruktion zu berücksichtigen. Sollte eine ruckartige Bewegung nicht vermeidbar sein, so muss dies beim Messablauf bzw. bei der Messsignal-Auswertung berücksichtigt werden (z.B. durch Referenzierung während der Bewegung).

11.1.3 Interpolation (nur 1Vss)

Ein Inkrementalgeber mit 1 Vss - Schnittstelle gibt 2 sinusförmige Differenz-Signale aus, die um 90° zueinander phasenverschoben sind. Eine Signalperiode (d.h. 360°) entspricht dabei einer Inkrementalgeber-Teilung (siehe folgende Abbildung). Durch analoge Interpolation werden in der Irinos-Box <u>IR-INC^{D58}</u> 200 Zwischenschritte innerhalb einer Signalperiode berechnet. Die nutzbare Auflösung eines Inkrementalgebers steigt damit um das 200-fache.

Beispiel: Ein Drehgeber hat eine angegebene Auflösung von 1.800 Teilungen/Umdrehung. Durch die Interpolation werden daraus 1.800 Teilungen/Umdrehung * 200 Inkremente/Teilung = 360.000 Inkremente/Umdrehung.

1Vss Signalperiode

Die Genauigkeit und Zuverlässigkeit der Interpolation hängt stark von den beiden analogen Differenz-Signalen ab. Ein ideales Signal zeichnet sich besonders durch folgende Eigenschaften aus:

- $_{\odot}$ Der Differenzpegel jedes Signals beträgt 1 Vss.
- o Der Signal-Offset ist 0, d.h. bei beispielsweise 0° hat das Signal

immer denselben Wert.

 $_{\odot}$ Die Phasenverschiebung der Signale ist immer exakt 90°.

Da ein derartiges Signal in der Praxis praktisch nie existiert, hat die Irinos-Box <u>IR-INC</u>¹⁵⁸ eine patentierte interne Verstärkungs- und Offset-Regelung. Diese gleicht Abweichungen vom Ideal-Signal innerhalb der zulässigen Grenzwerte (siehe Datenblatt) aus.

Ausserhalb der Grenzwerte ist keine zuverlässige Interpolation möglich. Eine integrierte Signalüberwachung erkennt derartige Fehler. Diese können und sollten per Software im laufenden Betrieb ausgelesen werden. Im Fehlerfall sollte der Inkrementalgeber-Eingang zurückgesetzt und der Messtaster neu referenziert werden.

Signalqualität

Die Signalqualiät hängt von vielen Faktoren ab. Dazu gehören ins besonders:

o Ist-Geschwindigkeit des Inkrementalgebers

Je höher die Ist-Geschwindigkeit des Inkrementalgebers, desto kleiner die tatsächliche Differenzspannung. Einige Inkrementalgeber haben im Stillstand und bei niedriger Geschwindigkeit eine gute Signalqualität. Sobald sie jedoch schnell bewegt / gedreht werden, verschlechtert sich die Signalqualität deutlich.

o Mechanische Stabilität des Inkrementalgebers sowie der Mechanik

Ein unrund laufender Drehgeber, ein unruhig laufender Messchlitten oder eine schlecht geführter Längenmesstaster führt zu Schwankungen im Messsignal.

o Einstellung bei offenen Gebersystemen

Bei offenen Gebersystemen (z.B. Glasmaßstäbe) muss der Sensor eingestellt werden. Eine ungenaue Einstellung kann vor allem bei dynamischen Betriebszuständen zu einem unzureichenden Sensorsignal führen.

o Kabellänge und Kabelqualität

Je länger das Kabel, desto schlechter die Signalqualität.

Je mehr Steckverbinder, desto schlechter die Signalqualität.

Ein unzureichend geschirmtes Kabel oder ein Kabel mit falscher Leitungsimpedanz verschlechtert das Messsignal.

Häufig sind auftretende Störungen auf eine Kombination der genannten Faktoren zurückzuführen.

Empfehlungen

• Beachten Sie die Grenzfrequenz des Inkrementalgebers. Diese entnehmen Sie den technischen Angaben des Herstellers.

Achtung: Die Grenzfrequenz ist abhängig von der Kabellänge.

- Kontrollieren Sie die Signalqualität bei der Inbetriebnahme. Die Signalpegel sollten bei der Inbetriebnahme noch ausreichend Abstand zu den Grenzwerten haben. Über das Irinos-Tool kann die Signalqualität mittels einer Live-Anzeige bewertet werden. Details dazu entnehmen Sie dem Benutzerhandbuch des Irinos-Tools.
- Stellen Sie sicher, dass kein starker Ruck / Schlag auf den Inkrementalgeber einwirkt.
- Integrieren Sie in Ihren Messablauf bei Bedarf eine Möglichkeit zum "Fehler zurückzusetzen" und "Messwert referenzieren".
- Verwenden Sie kurze Leitungen mit ausreichender Schirmung (dies gilt auch für die Steckverbinder). Vermeiden Sie Kabelverlängerungen. Das Irinos-Konzept bietet die Möglichkeit, die Irinos-Box in räumlicher Nähe des Gebers unterzubringen.
- Halten Sie einen möglichst großen Abstand zwischen Inkrementalgeber-Leitung und potentiellen Störquellen, wie z.B. Umrichter und Motorleitungen.

11.2 Leistungsaufnahme

Die Leistungsaufnahme eines Irinos-Systems hängt von der Anzahl der angeschlossenen Irinos-Boxen und der Anzahl der angeschlossenen Verbraucher ab. Angeschlossene Verbraucher sind beispielsweise Messaufnehmer und Sensoren. Eine Übersicht zur Abschätzung der Gesamt-Leistungsaufnahme entnehmen Sie folgender Tabelle. Bitte beachten Sie, dass es sich bei allen Werten um Richtwerte handelt. Die tatsächliche Leistungsaufnahme kann davon abweichen. Die genauen Angaben zur Leistungsaufnahme entnehmen Sie den jeweiligen Datenblättern.

Irinos-Box	Typische Leistungsaufnahm e ohne angeschlossene Verbraucher	Empfohlener Kalkulationswert mit angeschlossenen Verbrauchern
IR-MASTER ^{D49}	4,5 W	7 W (100mA / 24V für digitale E/As) 29 W (1A / 24V für digitale E/As)
<u>IR-TFV</u> D₅₂	4 W	5 W
<u>IR-AIN</u> D ₅6	4 W	4 W (24V Ausgang nicht verwendet) 10 W (250mA / 24V für 24V Ausgang)
IR-INC ^{D58}	4 W	5,5 W (4 Inkrementalgeber à 150mA)
IR-DIO ^{D61}	3 W	3W (Ohne I/O- Versorgung)

Die Leistungsaufnahme der Irinos-Boxen selbst ist vergleichsweise konstant. Kritisch für die Gesamtberechnung der Leistungsaufnahme sind ins besonders:

- Externe Sensoren / Verbraucher, die über die 24V Ausgänge der Irinos-Boxen IR-MASTER, IR-AIN oder IR-DIO angeschlossen sind.
- Externe Aktoren / Verbraucher, die an die digitalen Ausgänge der Irinos-Box IR-MASTER oder IR-DIO angeschlossen sind.
In vielen Anwendungen ist die zusätzliche Leistungsaufnahme durch externe Verbraucher im Bereich von wenigen Watt. Berücksichtigen Sie aber ins besonders die Leistungsaufnahme von über die digitalen Ausgänge geschalteten Lasten, wie z.B. Ventile oder Lampen.

Es wird empfohlen im Rahmen der System-Inbetriebnahme den tatsächlichen Leistungsbedarf durch eine Messung zu überprüfen.

11.3 Speicher-Vorgänge in den nicht-flüchtigen Speicher

Die Anzahl an Schreibvorgängen in den nicht-flüchtigen Speichers des Irinos-Systems ist begrenzt. Das System ist so ausgelegt, dass der Grenzwert bei typischer Anwendung nie erreicht wird. Die maximale Anzahl an Schreibvorgängen ist in folgender Tabelle aufgelistet:

Systemfunktion	Maximale Anzahl an Schreib- Vorgängen	Bemerkung
Diagnose-Speicher	4,8 Millionen	
Messkanal- Konfiguration	200.000	Ausführung über Opcode opcWCC.
Netzwerk- Konfiguration	200.000	Ändern der IP- Adresse über das Irinos-Tool.
Firmware-Update	100.000	

Die ausführlichen technischen Daten finden Sie im Datenblatt der jeweiligen Irinos-Box.

12.1 Allgemeine technische Daten

Messwertaufzeichnung		
Statische / Kontinuierliche Messung	Messrate ca. 30 Hz für flüssige Onlineanzeige	
dynamische Messung	Bis 10.000 Messwerte/s auf allen Kanälen gleichzeitig, d.h.	
	1 Kanal -> Gesamtmessrate 10.000 Messwerte/s	
	17 Kanäle -> Gesamtmessrate 170.000 Messwerte/s	
	32 Kanäle -> Gesamtmessrate 320.000 Messwerte/s	
Synchronität	Gleichzeitig Erfassung von allen Messkanälen	
	Synchrone Messwerterfassung, auch über kaskadierte Irinos- Boxen.	

Kaskadierung / ILink-Schnittstelle

Maximale Anzahl Irinos-Boxen	32
Maximale Anzahl Mess-Kanäle	Abhängig von der Kanalzahl der verwendeten Irinos-Boxen. Zum Beispiel bei IR-TFV maximal 256 Messkanäle.
Maximale Kabellänge ILink	20 m (Gesamtlänge der ILink - Ringverkabelung) Unter bestimmten Voraussetzungen auf Anfrage auch mehr.
ILink-Terminierung	Automatisch
Box-Adressierung	Automatisch

Gehäuse	
Ausführung	Design-Gehäuse Aluminium schwarz eloxiert, Rückplatte natur eloxiert, Frontplatte mit Frontfolie
Abmessungen	Standard: 160 x 98 x 33 mm (H x B x T) Netzteil-Box IR-PU: 160 x 98 x 57 (H x B x T)
Schutzart	Bis IP65 im gesteckten Zustand bei Verwendung von IP65- Steckverbindern
Befestigung Standard	2 rückseitige Gewindehülsen M4
Befestigung Zubehör	 Adapter f ür Hutschienen- Montage
	 Flanschplatte f ür Schnellwechsel- Montage, z.B. auf Stahlplatte.
	 Befestigungs-Adapter f ür Item- Profil 40mm
	 Montageständer f ür Item-Profil 40mm
Beschriftung	Beschriftungsmöglichkeit der Ein-/ Ausgänge über Beschriftungsträger (Zubehör) mit Standard- Beschriftungsschildern Typ Murrplastik ABB 17x9 (Bestellnummer Murrplastik: 86421020).

12.2 Abmessungen Irinos-Box

Alle Abmessungen sind in mm angegeben.

Abmessungen Irinos-Box (Frontansicht)

Abmessungen Irinos-Box (Seitenansicht)

Abmessungen Irinos-Box (Rückansicht)

12.3 Abmessungen Netzteil-Box IR-PU50

Alle Abmessungen sind in mm angegeben.

Abmessungen Netzteil-Box (Frontansicht)

Abmessungen Netzteil-Box (Seitenansicht) 50,00

60,00

 \oplus

 \odot

€ €

Abmessungen Netzteil-Box (Rückansicht)

12.4 Abmessungen Befestigungsflansch IR-MFFM-1

Alle Abmessungen sind in mm angegeben.

Abmessungen Irinos-Box mit Halteflansch (Frontansicht)

Abmessungen Irinos-Box mit Halteflansch

Rückansicht Irinos-Box mit Halteflansch

Abmessungen Halteflansch

Index

- 1 -

1Vss 58, 105, 124, 213

- 7 -

7-Segment-Anzeige 48

- A -

Abmessungen 220, 222 Absolut-Zeit 182, 202 Achtung 13 Adressierung 128, 220 Analoge Eingänge 49, 125 Anschlussbox 43, 52

- B -

Befestigung 32, 32, 113, 113, 114, 115, 220 Befestigungs-Adapter für Item-Profil 110 Befestigungs-Flansch 110, 114 Beschriftung 32 Beschriftungsträger 110 Bit-I/O 29, 172 Box-Adressierung 128 Box-Nummer 48

- C -

Crossover 82, 123

- D -

DC/DC-Wandler 30 DHCP 48, 130 Diagnose-Ereignis 190 Diagnose-Speicher 132, 182, 202 Digitale Ein-/Ausgänge 29, 32, 61, 72, 74, 125 DSUB 15-pol. Buchse 80 Dynamische Messung 143, 152

- E -

Echtzeit 28, 140 Eingangsfrequenz 212 Entsorgung 209 Ereignis 48, 190 Ethernet 82, 123, 202 Ethernet-Kabel 32 Ethernet-LEDs 49 Ethernet-Status 46

- F -

Fußtaster 29,84

- G -

Gefahr 13 Gewindehülsen 32, 113

- H -

Handtaster 29, 84 Hardware-Status 177 Hutschiene 32, 74, 113 Hutschienen-Adapter 110, 113

- | -

I/O-Boxen 32, 72, 74 ILink-Kabel 32 ILink-Schnittstelle 27,80 ILink-Verkabelung 120 ILink-Zeit 28, 202 Induktive Messtaster 52, 101, 102, 124 Inkrementalgeber 58, 105, 124 Integrierter Master 28, 46 Interpolation 213 IO-Bus 29, 32, 49, 72, 74, 99, 101, 122 IP-Adresse 48,130 IP-Informationen 48 IP-Schut 111 IR-AIN 32 IR-DIO 32,61 IR-INC 32, 58 Irinos-Tool 131 IR-MASTER 32, 49 IR-MFFM-1 110, 114, 228 IR-MHRM-1 110, 113 IR-MIPL-8-ABB179 110 IR-MITEM-40 110 IR-MWIP-40 110 IR-PU 32,70 IR-PU50 225 IR-TFV 32, 52 Item-Profil 32, 115, 117

Index

- K -

Knäbel IET 124

- L -

Leistungsaufnahme 215 Lieferumfang 110 Linien-Topologie 27

- M -

Masseschleifen 30 Master 28 Master-Box 28 Mess-Software 26 Messtaster 52 Messwertaufnahme 28 Messwert-Manipulation 177 Modularität 27 Montageständer 117 Montageständer für Item-Profil 110 MscDll 140

- N -

Netzteil 32 Netzwerk-Konfiguration 130 Netzwerk-Schnittstelle 48 Netzwerkverbindung 202 Nummerierung 128

- 0 -

Online-Anzeige 143

- P -

Pflege 208 Platzierung 111 Positions-gesteuerte dynamische Messung 152 Profibus 29 ProfiNet 29

- R -

Referenzierung 212 Referenzmarke 212 Reinigung 208 RS422 58, 105, 124

- S -

Schnellwechselsystem 32 Schutzart 111, 220 Schutzklasse 70 Schutzleiter 70 Sicherheitshinweise 18 Sinus-Oszillator 52, 101, 102 Slave-Box 28,46 Spannungsversorgung 27, 30, 70, 80 Speicher 217 Speichertiefe 157 SPS 29 Standort 111 Statische Messung 143, 147 Status-Anzeige 47, 48 Status-LED 47 Störimmunität 30 Subnetzmaske 48 Synchronisation 28 Synchronität 220 System-Informationen 183 System-Zeit 28

- T -

Terminierung 80, 120, 122, 128, 220 Terminierungs-LED 120 Tesa Halbbrücke 124 Tischversion 72 Transportschäden 110 TTL 58, 105, 124

- V -

Verkabelung 119 Vorsicht 13

- W -

Wärmeentwicklung 111 Warnung 13 Wartung 208 Web-Server 130, 132 Windows-Versionen 26

- X -

XSync 52

- Z -

Zeit-gesteuerte dynamische Messung 152